
2017 Joint Universities Accelerator School

Superconducting Magnets

Section I

Paolo Ferracin
(paolo.ferracin@cern.ch)

European Organization for Nuclear Research (CERN)



Introduction
Goal of the course

Overview of superconducting magnets for particle 
accelerators (dipoles and quadrupoles)

Description of the components and their function

From the superconducting material to the full magnet
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Introduction
Superconducting magnet technology

Multidisciplinary field: mixture of
Chemistry and material science: superconducting materials

Quantum physics: the key mechanisms of superconductivity

Classical electrodynamics: magnet design

Mechanical engineering: support structures

Electrical engineering: powering of the magnets

Cryogenics: keep them cool …

Very different order of magnitudes
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Outline

Section I

Particle accelerators and magnets

Superconductivity and practical superconductors

Magnetic design

Section II

Coil fabrication

Forces, stress, pre-stress

Support structures 

Section III

Quench, training, protection 
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Particle accelerators and magnets

Principle of synchrotrons
Driving particles in the same accelerating structure 
several times

Electro-magnetic field accelerates particles

Magnetic field steers the particles in a 
circular orbit

Particle accelerated   energy increased  
magnetic field increased (“synchro”) to keep 
the particles on the same orbit of curvature r
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Particle accelerators and magnets
Dipoles

Main field components is By

Perpendicular to the axis of the magnet z

Electro-magnets: field produced by a 
current (or current density)

Magnetic field steers (bends) the 
particles in a circular orbit
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Particle accelerators and magnets 
Quadrupoles

The force necessary to stabilize linear motion 
is provided by the quadrupoles

They provide a field 
equal to zero in the center

increasing linearly with the radius

They act as a spring: focus the beam

Prevent protons from falling to the bottom of 
the aperture due to the gravitational force

it would happen in less than 60 ms
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Particle accelerators and magnets

Dipoles: the larger B, the larger the energy

Quadrupoles: the larger B, the larger the focusing strength

For an electro-magnet, the larger B, the larger must be J
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Superconductivity
Critical surface

A type II material is 
supercond. below the 
critical surface defined by 

Critical temperature Tc

Property of the material 

Upper critical field Bc2

Property of the material 

Critical current density Jc

Hard work by the producer
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Superconductivity
Nb-Ti (1961) and Nb3Sn (1954)

Nb and Ti ductile alloy 

Extrusion + drawing

Tc is ~9.2 K at 0 T

BC2 is ~14.5 T at 0 K

Firstly in Tevatron (80s), then all the other

~50-200 US$ per kg of wire (1 euro per m)

Nb and Sn  intermetallic compound

Brittle, strain sensitive, formed at ~650-700C

TC is ~18 K at 0 T

BC2 is ~28 T at 0 K

Used in NMR, ITER

~700-1500 US$ per kg of wire (5 euro per m)
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Superconductivity
Nb-Ti vs. Nb3Sn
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Nb-Ti Nb3Sn
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Superconductivity
from Cu to Nb3Sn

Typical operational conditions (0.85 mm diameter strand)
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Cu Nb3SnNb-Ti

Je ~ 5 A/mm2

I ~ 3 A

B = 2 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 8-9 T

Je ~ 600-700 A/mm2

I ~ 300-400 A

B = 12-13 T
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Practical superconductors

Typical operational conditions (0.85 mm diameter strand)
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Practical superconductors
Introduction

Superconducting materials are 
produced in small filaments and 
surrounded by a stabilizer (typically 
copper) to form a multi-filament wire 
or strand. 

A superconducting cable is 
composed by several wires: multi-
strand cable.
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Practical superconductors
Multi-filament wires motivations

The superconducting materials used in 
accelerator magnets are

subdivided in filaments of small diameters

to reduce magnetic instabilities called flux 
jumps

to minimize field distortions due to 
superconductor magnetization

twisted together

to reduce interfilament coupling and AC 
losses 

embedded in a copper matrix

to protect the superconductor after a quench

to reduce magnetic instabilities called flux 
jumps
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Practical superconductors
Multi-filament wires motivations

Fluxoid distribution depends on the applied B 
and on Jc.
Thermal disturbance  the local change in Jc 

motion or “flux jump”  power dissipation

Stability criteria for a slab (adiabatic condition)

a is the half-thickness of the slab
jc is the critical current density [A m-2]
 is the density [kg m-3]
C is the specific heat [J kg-1]
c is the critical temperature. 

Nb-Ti filament diameters usually < 50 µm
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Practical superconductors
Multi-filament wires motivations

Superconductor magnetization 

When a filament is in a varying Bext, 
its inner part is shielded by currents 
distribution in the filament periphery

They do not decay when Bexis held 
constant  persistent currents

These currents produce field errors 
and ac losses proportional to Jcrf

LHC filament diameter 6-7 µm.

HERA filament diameter 14 µm.
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Practical superconductors
Multi-filament wires motivations

Inter-filament coupling 

When a multi-filamentary wire is 
subjected to a time varying magnetic 
field, current loops are generated 
between filaments.

If filaments are straight, large loops 
with large currents  ac losses

If the strands are magnetically 
coupled the effective filament size is 
larger flux jumps 

To reduce these effects, filaments 
are twisted

twist pitch of the order of 20-30 times 
of the wire diameter.
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Practical superconductors
Multi-filament wires motivations

Quench protection

Superconductors have a very high normal state resistivity

If quenched, could reach very high temperatures in few ms.

If embedded in a copper matrix, when a quench occurs, current 
redistributes in the low-resisitivity matrix  lower peak temperature

The copper matrix provides time to act on the power circuit

In the case of a small volume of superconductor heated beyond the 
critical temperature the current can flow in the copper for a short 
moment, allowing the filament to cool-down and recover supercond.

The matrix also helps stabilizing the conductor against flux jumps
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Practical superconductors
Multi-filament wires motivations

Flux jumps

Persistent currents

AC losses

Quench protection
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Practical superconductors
Fabrication of Nb-Ti multifilament wires

Nb-Ti ingots

200 mm ∅, 750 mm long

Monofilament rods are stacked to 
form a multifilament billet

then extruded and drawn down

can be re-stacked: double-stacking process
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Multifilament wires 
Fabrication of Nb3Sn multifilament wires

Since Nb3Sn is brittle
it cannot be extruded and 
drawn like Nb-Ti. 

Process in several steps
Assembly multifilament billets 
from with Nb and Sn separated

Fabrication of the wire through 
extrusion-drawing

Fabrication of the cable

Fabrication of the coil 
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“Reaction”

Sn and Nb are heated to 600-700 C

Sn diffuses in Nb and reacts to form Nb3Sn



Practical superconductors
Multi-strand cables motivations

Most of the superconducting coils for 
particle accelerators wound from a 
multi-strand cable (Rutherford cable)

Reduction of strand piece length

reduction of number of turns

easy winding

smaller coil inductance

less V for power supply during ramp-up;

after a quench, faster discharge and V

current redistribution in case of a defect or 
a quench in one strand

The strands are twisted to
Reduce inter-strand coupling currents

Losses and field distortions

Provide more mechanical stability
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Practical superconductors
Multi-strand cables motivations

Rutherford cables fabricated by cabling machine

Strands wound on spools mounted on a rotating drum

Strands twisted around a conical mandrel into rolls 
(Turk’s head) 

The rolls compact the cable and provide the final shape
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Practical superconductors
Multi-strand cables

A Rutherford cable can be rectangular or trapezoidal

To stacking cables in an arc-shaped coil around                                    
the beam pipe

Cable compaction

Ratio of the sum of the cross-sectional area of the strands (direction 
parallel to the cable axis) to the cross-sectional area of the cable

88% (Tevatron) to 92.3% (HERA).

Chosen to provide good mechanical stability + high current capability 
+ enough space for helium cooling or epoxy impregnation.

Cables degradation

Critical current density of a virgin wire before cabling is higher then 
the one of a wire after cabling

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin 27



Practical superconductors
Multi-strand cables

Edge deformation may cause 
reduction of the filament cross-sectional 
area (Nb-Ti)

breakage of reaction barrier with incomplete 
tin reaction (Nb3Sn)

In order to avoid degradation

strand cross-section investigated

Edge facets are measured

General rule: no overlapping of facets

Keystone angle is usually of ~ 1° to 2°

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin
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Practical superconductors
Cable insulation

The cable insulation must feature
Good electrical properties to withstand turn-to-turn V after a quench

Good mechanical properties to withstand high pressure conditions

Porosity to allow penetration of helium (or epoxy)

Radiation hardness

In Nb-Ti magnets overlapped layers of polyimide

In Nb3Sn magnets, fiber-glass braided or as tape/sleeve.

Typically the insulation thickness: 100 and 200 µm.
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Practical superconductors
Superconducting cables

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin

Filling ratio: 0.25-0.3
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Outline

Section I

Particle accelerators and magnets

Superconductivity and practical superconductors

Magnetic design

Section II

Coil fabrication

Forces, stress, pre-stress

Support structures 

Section III

Quench, training, protection 
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Magnetic design
Introduction

The magnetic design is one of the first steps in the a 
superconducting magnet development

It starts from the requirements (from accelerator physicists, 
researchers, medical doctors…others) 

A field “shape”

Dipole, quadrupole, etc

A field magnitude

Usually with low T superconductors from 5 to 20 T

A field homogeneity

Uniformity inside a solenoid, harmonics in a accelerator magnet

A given aperture (and volume)

Some cm diameter for accelerator magnets, much more for detectors and 
fusion magnets 
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Magnetic design

How much conductor do 
we need to meet the 
requirements?

And in which 
configuration?

Outline

How do we create a perfect 
field?

How do we express the field 
and its “imperfections”?

How do we design a coil to 
minimize field errors?

Overview of different designs
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Perfect dipole field 
Intercepting circles (or ellipses)

Within a cylinder carrying j0, the field is 
perpendicular to the radial direction and 
proportional to the distance to the centre r:

Combining the effect of two intersecting cylinders

A uniform current density in the area of two 
intersecting circles produces a pure dipole

The aperture is not circular

Not easy to simulate with a flat cable

Similar proof for intersecting ellipses

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin
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Perfect dipole field 
Thick shell with cos current distribution

Thick shell 
Current density J = J0 cos on a shell with 
a finite thickness

Where, Bbore is the bore field, J0 is overall 
current density and w is the coil width

Ideal case

Conductor peak field Bpeak = Bbore

Perfect field quality

Comparison:
For solenoid

B1 = -J0 μ0w

Twice more efficient than a dipole

Joint Universities Accelerator School, Archamps, 01 March 2017
Mini-workshop on Superconducting 

Magnets
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From ideal to practical configuration

How can I reproduce thick shell with a cos
distribution with a cable?

Rectangular cross-section and constant J

First “rough” approximation
Sector dipole
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Computation of the load line
Approximations of practical winding cross-sections

Sector coil
Current density J = J0  (A per unit 
area) on a sector with a maximum 
angle 

Where, Bbore is the bore field, J0 is 
overall current density and w is 
the coil width

“Less ideal” case

“Not so perfect” field quality

Best with  = 60 degrees

Bpeak = Bbore·  ~1.04

Joint Universities Accelerator School, Archamps, 01 March 2017
Mini-workshop on Superconducting 

Magnets
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From ideal to practical configuration

How can I reproduce thick shell with a cos
distribution with a cable?

Rectangular cross-section and constant J

First “rough” approximation
Sector dipole

Better ones
More layers and wedges to reduce J towards 90
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As a result, the field is not perfect anymore

How can I express in improve the “imperfect” field inside the aperture? 
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Maxwell equations for magnetic field 

In absence of charge and magnetized material

If                    (constant longitudinal field), then

Field representation
Maxwell equations
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Field representation
Analytic functions

If 

Maxwell gives

and therefore the function By+iBx is analytic

where Cn are complex coefficients

Advantage: we reduce the description of the field to a 
(simple) series of complex coefficients
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Magnetic design
Harmonics

The field can be expressed as (simple) series of coefficients

So, each coefficient corresponds to a “pure” multipolar field
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The field harmonics are rewritten as

The coefficients bn, an are called normalized multipoles
bn are the normal, an are the skew (adimensional)
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Field representation
Harmonics

One can demonstrate that with line currents with a dipole or a 
quadrupole symmetry, most of the multipoles cancelled

For n=1 dipole
Only b3, b5, b7, ….. are present

For n=2 quadrupole
Only b6, b10, b14, ….. are present

…and so on

These multipoles are called allowed multipoles

The field quality optimization of a coil lay-out concerns only a few
quantities

For a dipole, usually b3 , b5 , b7 , and possibly b9 , b11
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Back to the original issue:
From ideal to practical configuration

How can I reproduce thick shell with a cos
distribution with a cable?

Rectangular cross-section and constant J

First “rough” approximation
Sector dipole

Better ones
More layers and wedges to reduce J towards 90

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin

Now, I can use the multipolar expansion to optimize my 
“practical” cross-section
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A “good” field quality dipole
Sector dipole

We compute the central field given by a 
sector dipole with 2 blocks 

Equations to set to zero B3 ,B5 and B7 

And the one given by a 3 blocks 

Equations to set to zero B3 ,B5 ,B7 ,B9 and B11
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A “good” field quality dipole
Sector dipole

Let us see two coil lay-outs of real magnets
The RHIC dipole has four blocks
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Iron yoke

Keep the return magnetic flux 
close to the coils, thus avoiding 
fringe fields

In some cases the iron is partially 
or totally contributing to the 
mechanical structure

Considerably enhance the field 
for a given current density

The increase is relevant (10-30%), 
getting higher for thin coils

This allows using lower currents, 
easing the protection
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Iron yoke

A rough estimate of the iron thickness necessary to avoid 
fields outside the magnet

The iron cannot withstand more than 2 T

Shielding condition for dipoles:

i.e., the iron thickness times 2 T is equal to the central field times the 
magnet aperture – One assumes that all the field lines in the aperture go 
through the iron (and not for instance through the collars)

Example: in the LHC main dipole the iron thickness is 150 mm

Shielding condition for quadrupoles:
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A review of dipole lay-outs

Tevatron MB

Superconducting Magnets, JUAS, February 28th, 2017 Paolo Ferracin

0

20

40

60

80

100

0 20 40 60 80 100
x (mm)

y
 (

m
m

)

48



A review of dipole lay-outs

RHIC MB
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A review of dipole lay-outs

HERA MB
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A review of dipole lay-outs

SSC MB
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A review of dipole lay-outs

HFDA dipole
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A review of dipole lay-outs

LHC MB
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A review of dipole lay-outs

FRESCA
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A review of dipole lay-outs

MSUT
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A review of dipole lay-outs

D20
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Appendix
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Practical superconductors
Fabrication of Nb-Ti multifilament wires

Copper to superconductor ratio 
ensure quench protection without compromising 
the overall critical current of wire.

Filament diameter 
Minimize flux jumps and persistent currents

Minimizing the wire processing cost

The inter-filament spacing 
small so that the filaments, harder then Cu, 
support each other during drawing operation

large enough to prevent filament couplings

Cu core and sheath to reduce cable 
degradation

Main manufacturing issue: piece length
It is preferable to wind coils with single-piece wire 
(to avoid welding)

LHC required piece length longer than 1 km
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Field representation
Harmonics

Important property: starting by the multipolar expansion of a 
current line (Biot-Savart law)
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A “good” field quality dipole
Sector quadrupole

Let’s look at the quadrupoles

First allowed multipole B6 (dodecapole)

for =/6 (i.e. a 30° sector coil) one has B6=0

Second allowed multipole B10

for =/10 (i.e. a 18° sector coil) or for =/5 (i.e. a 36° sector coil)

one has B10=0

The conditions look similar to the dipole case …
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