Tutorial 2

24 January 2017, Archamps

hector.garcia.morales@cern.ch, andrea.latina@cern.ch, dario.pellegrini@cern.ch, guido.sterbini@cern.ch

TUTORIAL 2: FIRST PART

Matching the FODO cell using a parametric plot.

- ► Consider the FODO cell of tutorial 1 ($L_{cell} = 100$ m, $L_{quad} = 5$ m and f = 200 m).
- ▶ Define the beam (proton at $E_{tot} = 7$ TeV), activate the sequence and try to twiss it powering the quads to obtain $\Delta \mu \approx 90$ deg phase advance in the cell using the thin lens approximation (use Fig. 1). What is the actual phase advance computed by MADX?

TUTORIAL 2: FIRST PART

Figure 1: Phase advance versus quad strength, cell length and quad length. Thin lens approximation of a FODO.

TUTORIAL 2: SECOND PART

Tune and β -function dependence with K1.

- ▶ What is the β_{max} ? Compare with the thin lens approximation (Fig. 2). Compute the maximum beam σ assuming ϵ_n =3 mrad mm, $E_{tot} = 7$ TeV?
- ► Halve the focusing strength of the quadrupoles, what is the effect of it on the β_{max} , β_{min} and on the $\Delta\mu$? Compare with the parametric plots in Fig. 1 and Fig. 2.

TUTORIAL 2: SECOND PART

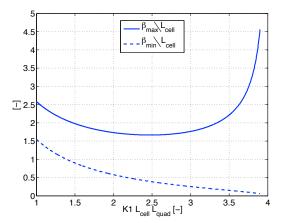


Figure 2: β -functions versus quad strength, cell length and quad length. Thin lens approximation of a FODO.