JUAS 2017, Synchrotron Radiation exam (2 pages)

The following constant will be used in the exercises

elementary electric charge	$e = 1.6 \cdot 10^{-19} C$
velocity of light	$c = 2.998 \cdot 10^8 \text{ m/s}$
reduced Planck constant	$\hbar = h/2\pi = 1.05 \cdot 10^{-34} \text{ Kg m}^2/\text{ s}$
vacuum dielectric constant	$\epsilon_0 = 8.854 \cdot 10^{-12} \text{ F/m}$
electron rest energy	0.511 MeV
proton rest energy	938 MeV
classical electron radius	$r_e = 1/(4\pi\epsilon_0) e^{2}/(mc^2) = 2.81 \cdot 10^{-15} m$
	$C_q = \frac{55}{32\sqrt{3}} \frac{\hbar}{mc} = 3.84 \cdot 10^{-13} m$
	$32\sqrt{3}$ mc

Solve at least 3 of the following 4 exercises. (All exercises have the same value).

Ex. 1:

Consider an electron storage ring operating at 3 GeV, with a lattice made of 24 DBA cells.

- a) give an estimate for the minimum emittance achievable in such ring (take $J_x = 1$).
- b) If the magnetic field of the dipole is 1.4T calculate the critical energy of the bending magnets

Assume we want to upgrade this lattice to a 48 DBA cells.

- c) give an estimate for the minimum emittance achievable in such ring.
- d) Assuming that the length of each dipole has not changed in the upgrade, calculate the new critical energy for the dipole radiation.
- e) Describe what is the change in the characteristics of the bending magnet radiation (i.e. power, spectrum and angular distribution).

Ex. 2:

Consider an electron storage ring operating at 6 GeV. The injection process requires that the oscillations of the injected beam at 6 GeV are damped within 10 ms, otherwise the injected beam hits the back of the septum magnet and no injection is possible.

- a) What is the energy loss per turn necessary to guarantee the damping time required for injection (take $J_x = 1$ and a revolution time $T_0 = 2\mu s$).
- b) If the energy of the ring reduced to 3 GeV, what is the energy loss per turn necessary to guarantee the injection with the existing injection system parameters?
- c) If we want to use damping wiggler to guarantee the injection at 3GeV and $L_W = 50$ m are available, what is the magnetic field B_W required from the damping?
- d) What are the main effects of the introduction of damping wigglers on the equilibrium beam parameters?

Ex. 3:

In a 3 GeV electron synchrotron, a beamline is made by an undulator of length L = 2 m, operating at a wavelength $\lambda = 1$ nm. The emittance of the ring is 1 nm in both planes and the optics function at the middle of the straight section are $\beta_x = \beta_y = 5$ m and $\alpha_x = \alpha_y = 0$ and the dispersion function is zero.

The beamline has a round slit aperture at 20 m downstream with radius r = 1 mm.

- a) is the undulator fan at $\lambda = 1$ nm passing through the slit? (assume a Gaussian beam for the undulator radiation)
- b) What happens if the optics function in the middle of the straight section are reduced to $\beta_x = \beta_y = 1m$? Give an estimate of the change in flux through the slit.
- c) Describe the criteria to achieve the optimal matching of the electron phase space and the photon phase space at the centre of the undulator.

Ex. 4:

Describe the strategies for the design of the linear optics functions β , α and dispersion D in as low emittance lattice. What are the most common solutions? Sketch the optics functions required to achieve the theoretical minimum emittance in a TME and DBA lattice.