Corpuscular optics 2017 (JM De Conto) - 2 pages

Exercise 1. We consider a ${ }^{8} \mathrm{O}^{3+}$ ion. Its kinetic energy is $400 \mathrm{MeV} / n u c l e o n$. The energy at rest for the nucleon is 0.940 GeV , the speed of light is $3.00 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$. Give the numerical value of the Lorentz β and γ coefficients and the magnetic rigidity of the particle with 3 significant digits

Exercise 2. A parallel-to-parallel system is defined by the following property: any initial beam parallel to the axis exits parallel to the beam axis. Give the general form of the 2×2 transfer matrix (3 coefficients among 4) supposing the initial momentum is 1 and the final momentum is 2 (arbitrary units).

Exercice 3. A magnetic quadrupole has a bore radius of 40 mm , a length 25 cm . The beam rigidity is 3 Tm . What must be the field on the pole to have a focal length equal to 2 meters? Give the numerical value of the transfer matrix in the focusing plane, with 3 significant digits.

Exercise 4: FODO cell
Consider a FODO cell made of: a focusing thin lens (focal length f), a drift space (length L), a defocusing thin lens (focal length f) and a drift space (length L)

- Compute M, the transfer matrix of the FODO cell
- Supposing you can write M on the TWISS form (i.e. this means that the motion is stable), and supposing μ to be the betatron phase advance per FODO cell (and $\mu>0$), give $\sin (\mu / 2)$ versus L and f. Deduce the condition to have a stable motion for FODO in general.

Exercise 4A. We consider a symmetric system. The first half transfer matrix is $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Your boss has computed the transfer matrix of the second half, but hesitates between $\left[\begin{array}{cc}-2 & -1 \\ -3 / 2 & -1 / 2\end{array}\right]$ and $\left[\begin{array}{cc}-2 & -1 \\ -3 / 2 & 1 / 2\end{array}\right]$. What is the correct answer, among these two matrices?

Exercise 5. Spectrometer (a very bad spectrometer, only for the exercise).
We consider a spectrometer. It is made of a drift space (length L_{1}), a defocusing thin lens (focal length f), a 45 -degree dipole (radius ρ) and a drift space (length L_{2}). The transfer matrix of the dipole is $\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & \rho \\ -\frac{1}{\rho} & 1\end{array}\right]$

- Give a relation between L_{1} and L_{2} in order to have point-to-point imaging
- Suppose now, in addition to the point-to-point imaging, that the beam has a waist $\alpha_{0}=0$ at the beginning of the first drift. Give a relation between f and ρ in order to have $\alpha_{1}=0$ at exit (waist-to-waist imaging).
- Under these conditions, what is the magnification?
- We wish $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}$. Express L versus ρ

