Synchrotron Light Source Project
 JUAS 2017

juas

Group Structure

Content

- Introduction
- Lattice design
- Injection/Extraction
- RF
- Closed orbit
- Chromaticity
- Dynamic Aperture \& Resonances
- Magnet considerations
- Aperture \& Vacuum considerations
- Synchrotron radiation

Aim

- To upgrade a synchrotron light facility with a new 3 GeV highbrightness ring, whilst keeping the existing 2 GeV injector.

Requirements

- Maximum permitted circumference: 700 m
- Lattice: 2 super periods connected by 2 dispersion-free regions
- Super period contains DBA 12 bending cells
- 500 MHz RF system, 2 GeV to 3 GeV whilst compensating for radiative losses
- Smallest possible equilibrium horizontal emittance

Existing injector parameters

- Existing injector operates at 500 MHz
- Single injector pulse contains 225 bunches, duty cycle of 5s
- Bunch length of 40 ps (12 mm)
- Bunch intensity of 4×10^{10} electrons per bunch
- 1- σ emittances of $0.15 \pi \mathrm{~mm}$ mrad for both in both $\mathrm{H} \& \mathrm{~V}$ planes, $\frac{\Delta p}{p}=$ 10^{-3}

Lattice design

Lorenzo Teofili,
Heidi
Giacomo
Riccardo
Antonia
Paul
Ángel
Ezgy
Antonio
Pang

The lattice group

The main task
Improving the lattice of a 2° generation synchrotron light source lattice into a 3° generation one
The key parameter to do that is the emittance! Indeed, the performance of such a machine are optimized if the lattice keep the equilibrium emittance as lower as possible, however, having a reasonable cost!

Standard Cell Double Bend Achromat (DBA)

Cell optimization (Numerical)

Here it is our main Guest The Equilibrium Emittance

-First Optimization: Chasman-Green	$\beta_{x}(0)=1.549 L$ $\alpha_{x}(0)=3.873$
	$\beta_{x}(0)=?$
- "Super" Optimization	
Including the gradient	

$$
\begin{gathered}
H(s)=\gamma_{x} D_{x}^{2}+2 \alpha_{x} D_{x} D_{x}^{\prime}+\beta_{x} D_{x}^{\prime 2} \\
\left(\begin{array}{l}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{s}=\left(\begin{array}{ccc}
t_{11}{ }^{2} & -2 t_{11} t_{12} & t_{12}{ }^{2} \\
-t_{11} t_{21} & t_{11} t_{22}+t_{12} t_{21} & -t_{12} t_{22} \\
t_{21}{ }^{2} & -2 t_{21} t_{22} & t_{22}{ }^{2}
\end{array}\right)\left(\begin{array}{c}
\beta \\
\alpha \\
\gamma
\end{array}\right)_{0}
\end{gathered}
$$

Joint Universities Accelerator Schoo

Cell optimization (Numerical)

$$
k=0.37\left[1 / \mathrm{m}^{2}\right]
$$

Three different cell designs

Three Different Cell Designs

Cost estimation

"Rough" estimation of components cost
 Quadrupole ~ $15 \mathrm{~K} \$$
 Dipole ~ 20K\$

- Basic Cell

Element	Number	Lenght $[\mathrm{m}]$
Dipole	2	1.2
Quadrupole 8	0.4	

Total Cost:3840 K\$
$\varepsilon=0.0260 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon C=99.84 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

- 1° Optimized Cell:

Element	Number	Lenght $[\mathrm{m}]$
Dipole	2	1.2
Quadrupole	12	0.4

Total Cost:5280 K\$
$\varepsilon=0.0014 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon C=7.795 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

- 2° Optimized Cell:

Element	Number	Lenght $[\mathrm{m}]$
Dipole	2	1.2
Quadrupole $6(+2)$	$0.4(0.2)$	

Total Cost:3840 K\$
$\varepsilon=0.0026 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon C=9.98 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

Joint Universities Accelerator School

Cost estimation

"Rough" estimation of components cost
 Quadrupole ~ 15K\$
 Dipole ~ 20K\$

- Basic Cell

Element	Number	Lenght $[\mathrm{m}]$
Dipole	2	1.2
Quadrupole 8	0.4	

Total Cost:3840 K\$
$\varepsilon=0.0260 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon C=99.84 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

- 1° Optimized Cell:

Total Cost:5280 K\$
$\varepsilon=0.0014 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon \mathrm{C}=7.795 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

- 2° Optimized Cell:

Element	Number	Lenght $[\mathrm{m}]$
Dipole 2	1.2	
Quadrupole $6(+2)$	$0.4(0.2)$	

Total Cost:3840 K\$
$\varepsilon=0.0026 \pi \mathrm{~mm} \mathrm{mrad}$
$\varepsilon C=9.98 \pi \mathrm{~mm}$ mrad $\mathrm{K} \$$

Joint Universities Accelerator Schoo

Lattice design geometry

PLAN VIEW X.Y
Parallel projection

CENTRAL ORBIT
Circular machine

Circumference
Horizontal tune
Vertical tune
Horizontal chromaticity
[m] $=$
Qx =
$\mathrm{Qz}=$ $\mathrm{dQx} / \mathrm{dp} / \mathrm{p}=$ dQz/dp/p = gamma tr =

		arapoples				
			N			
	${ }^{8} 88^{8}$			V		
	8	-	-	Dipoles		

Joint Universities Accelerator School

Phase shifter

- Change phase advance to find the best working point.
- Phase advance of the shifter changed from $\Delta \mu=6.2832$ to $\Delta \mu=6.40$ to explore a big range of phase shifts.
- 6 steps of phase shifts from $\Delta \mu=6.30$ to $\Delta \mu=6.40$
- To find the matching, 6 conditions were set, with 7 quadrupole gradients used as variables.

Joint Universities Accelerator School

Möbius Ring

- Phase shifter and rotator added to the ring.

Phase shifter

Tune adjustment

Rotator

$X-Y$ planes rotation

- Ring lattice replicated two times and run as a transfer line
- Using single particle tracking:
- during first turn the particle oscillates in Xplane;
- during second turn the particle oscillates in Y-plane;
- Successful exchange of $X-Y$ planes.

Dis. [m]

 0350

Joint Universities Accelerator Schoo

Injection/Extraction

Axel Poyet
Edgar Jérémy
Félix,
Doru
Alexandru
Adrian

Injection Process

$1^{\text {st }}$ approach (tricky solution):

- Injection of 4 pulses (225 bunches) in 4 separate periods

Injection Process

- Flat top for 450ns to inject a pulse of 225 bunches
- Ramp up/down ≤ 50 ns to keep a gap of 25 bunches

Available time to ramp the magnet
Needed time to recharge capacitors (PS)
Waiting time to place next pulse

Injection Process

Simple solution:

-> Ramp up and inject all 4 pulses at once
-> Ramp down within 50ns

Extraction Process

- Ramp up extraction kicker within 50 ns in the gap
- Complete extraction in one turn
- Dumping in a secure structure (steel)

Injection \& Extraction - Basic Design

PLAN VIEW X-Y
Parallel projection
Grid step 20.000 m

Injection - Basic Design

PLAN VIEW X-Y Parallel projection
Grid step $\quad 0.950 \mathrm{~m}$

Parameters

- Particles at 2 GeV , 8.2 meters long.
- 2 septa at $B=0.55 \mathrm{~T}$.
- 4 kickers at $0.06 \mathrm{~T} \rightarrow \theta=5.4 \mathrm{mrad}$.
- Large space margin at the second septum exit (7.32 cm).
- Matching parameters at insertion point.
- $\beta_{x}=\beta_{z}=20.8 m ; \alpha_{x}=\alpha_{z=-0.2}$
- $\varepsilon_{x}=\varepsilon_{z}=0.1500$ pi.mm.mrad

Injection - Basic Design

PLAN VIEW X-Y
Parallel projection
Grid step 0.950 m

Injection - Basic Design

Main functions in the line

- Required conditions are matched.
- Prior to injection line, there will be :
- 1 RF cavity
- 6 quadrupoles ($\beta_{x}, \beta_{z}, \alpha_{x}, \alpha_{z}, D_{x}, D_{z}$)
- Functions don't get out of hand :
- Dispertion is ok since we're out of an RF
- Beta function will be easy to match
- No need for more elements. Keep cost as low as possible.

Extraction \& Dump - Basic Design

PLAN VIEW X - Y Parallel projection Grid stap 1.935 m

		\|							
			\\|				1		
				\int_{-f}					
				-					

Parameters

- Particles at $3 \mathrm{GeV}, 17.725$ meters long.
- 2 septa at $\mathrm{B}=0.83 \mathrm{~T}$
- 4 kickers at $0.06 \mathrm{~T} \rightarrow \theta=3.6 \mathrm{mrad}$
- 2 defocusing quads spread the beam for dumping.
- Minimal space margin at the first septum entrance (4.91 cm).
- Dump structure is 3 meters away from ring.
- Matching parameters at insertion point
- $\beta_{x}=\beta_{z}=20.8 \mathrm{~m} ; \alpha_{x}=\alpha_{z}=0.2$
- $\varepsilon_{x}=\varepsilon_{z}=0.1500$ pi.mm.mrad

Extraction \& Dump - Basic Design

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Extraction \& Dump - Basic Design

Main functions in the line

- Recquired conditions are matched.
- The quadrupoles are the same as the ring's ones :
- Reduces cost and assembly complexity.
- Can be plugged in series and left passive (no powering problem).
- Functions have a satisfying behavior :
- Dispertion does not matter that much.
- One very high beta is enough for dumping.

Extraction \& Dump - Basic Design

| | | | | 0.1000
 Vert. [m] | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |

$\begin{array}{ll}\text { Particles at start } & 300 \\ \text { Particles left } & 300\end{array}$ Particles left

Name Kicker
Alias
Type: RBEND
Index: 1

Extraction \& Dump - Basic Design

Particles at start 300 Particles left 300

Extraction Process

- Ramp up extraction kicker within 50 ns in the gap
- Complete extraction in one turn

Extraction Line:

PLAN VIEW X-Y
Parallel projection
Grid step 4.000 m

								-	
						ancm			
-									

Extraction Process

Extraction Line Ring:

PLAN VIEW X-Y
Paralel projection
Crid trep 4.000 m

Radio Frequency System

Vittorio Bencini
Anna Pugelise
Marco Diomede
Gabriel Tuturcia Mostafa Behtoei Thomas Coldfix

Requirements and design parameters
 up the magnets ramp

Design parameter	Value
C ring $[\mathrm{m}]$	600
$\mathrm{R}[\mathrm{m}]$	95.49
$\rho[\mathrm{~m}]$	9.17
σ_{z} bunch $[\mathrm{m}]$	0.012
σ_{e} bunch $[\mathrm{m}]$	0.001
$E_{\text {injection }}[\mathrm{GeV}]$	2
$E_{\text {final }}[\mathrm{GeV}]$	3

RF modulation

In order to compute the $V_{\text {RF }}$ needed to compensate the losses and accelerate the particle we have to consider

$$
\frac{d B}{d t}=\text { const } \quad \square \Delta E_{A C C, t u r n}=\frac{d B}{d t} \times 2 \pi R \rho=1.084 \mathrm{KeV}
$$

So, taking into account the losses due to synchrotron radiation, it becomes

$$
\begin{aligned}
& \Delta E_{R F, \text { turn }}=\Delta E_{A C C, t u r n}+\Delta E_{L, \text { turn }} \\
& \Delta E_{L, \text { turn }}[\mathrm{KeV}]=88.46 \times \frac{E[\mathrm{GeV}]^{4}}{\rho}
\end{aligned}
$$

RF modulation

The energy gain is followed by modulating $\mathrm{V}_{\mathrm{RF}} \longrightarrow \sin \varphi_{s}=30^{\circ}=$ const
Wigglers off

$$
V_{R F, 2 \mathrm{GeV}}=308.7 \mathrm{KV}
$$

$$
V_{R F, 3 \mathrm{GeV}}=1562.8 \mathrm{KV}
$$

$$
V_{R F, 3 \mathrm{GeV}, \mathrm{~W}}=1962.8 \mathrm{KV}
$$

Matching at injection

The macthing condition is respected if the ratio between the axis of the bunch ellipse is similar to those of the bucket.

$$
\left|\frac{\sigma_{z}}{\sigma_{\varepsilon}}\right| \text { bunch } \approx\left|\frac{\sigma_{z}}{\sigma_{\varepsilon}}\right| \text { bucket }
$$

Matching at injection

Another condition is that, in case the first is not respected, the rotated ellipse still complitely fits into the bucket

RF cavity design

Cavity parameter	Value
$V_{\text {RF,peak }}[\mathrm{KV}]$	750 KV
φ_{s} (above transition) $[\mathrm{deg}]$	150
Gap $[\mathrm{mm}]$	100
$R_{0}[\mathrm{M} \Omega]$	3.5
$f_{\text {res }}[\mathrm{MHz}]$	500

Using HFSS and CST simulation it was possible to confirm the radius and to compute the shunt impedance of the cavity

$$
R=23.08 \mathrm{~cm}
$$

From EM theory we know that the relationship between radius and frequency in $T M_{01}$ mode is given by

$$
R=\frac{2.405}{f_{\text {res }}}=22.95 \mathrm{~cm}
$$

RF power and cooling

At 3 GeV (wigglers on) the cavities have to be powered with

$$
P=\frac{\left(V_{R F}\right)^{2}}{R_{0}}=1.1 M W
$$

The efficiency between klystron and cavity is usually in the order of $\varepsilon=0.85$

$$
P_{t o t}=P \times(2-\varepsilon)=1.27 \mathrm{MW}
$$

Cooling:

- The power dissipated in the cavity walls induce a ΔT that could affect the performances of the cavities (resonance frequency shift, mechanical stress)
- Colling system is needed

WinAGILE results

Putting the computed $V_{R F}$ values at 2 and 3 GeV (wigglers off) we can see that

- The phase at the center of the cavity is exactly 150 deg (in the figure different reference system and negative phase)
- The E field has different amplitudes but the right shape

Closed Orbit

Closed Orbit

Grid size $2.6108[\mathrm{~m}]$

Closed-orbit correction is a compromise. The orbit is measured at only a finite number of positions and there is only a finite number of correctors.

Our goals:

\rightarrow Generate errors inside the machine
\rightarrow Choose correctors and monitors
\rightarrow Try to correct the orbit of the particle in closed orbit case

Machine errors

Random generated errors:
Distribution:Truncated gaussian (4.5 sigmas)
Axial shift of all dipoles $[\mathrm{m}] \quad=0.001$
Tilts of all dipoles
[rad]
$=0.001$
Trans. shifts of all quads. $[\mathrm{m}] \quad=0.0001$ (H\&V)
No. of machines in sample: 1000

Correctors/Monitors of the orbit

\# corr	Pk-Pk [m]	Mean [m]	RMS [Initial values	\# corr	Pk-Pk [m]	Mean [m]	RMS	
0	0.050201	-0.000036	0.008351	\wedge		0	0.064047	0.000189	0.011008	\wedge
1	0.034230	-0.000152	0.004511			1	0.049571	0.000310	0.007059	
2	0.033369	- 0.000166	0.004433			2	0.051840	0.000321	0.007338	
3	0.028876	-0.000184	0.004055			3	0.035442	0.000233	0.005486	
4	0.028863	-0.000171	0.004047		\rangle	4	0.035533	0.000224	0.005491	
5	0.028869	-0.000167	0.004047			5	0.035597	0.000217	0.005496	
6	-0.028859	-0.000170	[0.004046			6	0.035700	0.000238	0.005494	
7	-0.028921	- 0.000181	0.004043			7	0.035736	0.000246	0.005496	
8	-0.028974	-0.000189	[0.004041			8	0.035774	0.000242	0.005499	
9	0.028984	- 0.000192	0.004041			9	0.036114	0.000229	0.005523	
10	0.028978	-0.000191	0.004041			10	0.036367	0.000220	0.005540	
11	0.028899	-0.000179	0.004033			11	0.036565	0.000210	0.005552	
12	0.028816	-0.000165	0.004022			12	0.036796	0.000198	0.005567	
13	0.028557	-0.000141	0.003991			13	0.036798	0.000197	0.005567	
14	0.028347	-0.000119	0.003973			14	0.036939	0.000215	0.005569	
15	0.028218	-0.000142	0.003957			15	0.036990	0.000228	0.005570	
16	0.028200	-0.000149	0.003954			16	0.037156	0.000219	0.005581	
17	0.028180	-0.000158	0.003946			17	0.037299	0.000212	0.005590	
18	0.028099	-0.000205	0.003905			18	0.037522	0.000236	0.005593	
19	0.027895	- 0.000171	0.003852			19	0.037600	0.000244	0.005597	
20	0.027693	- 0.000134	0.003791			20	0.037681	0.000239	0.005601	
21	0.027624	-0.000110	0.003765			21	0.038402	0.000224	0.005643	
22	0.027534	-0.000082	0.003730			22	0.038853	0.000214	0.005671	
23	0.027509	-0.000054	0.003701			23	0.039191	0.000205	0.005693	
24	0.027508	-0.000032	0.003681	\checkmark		24	0.039577	0.000195	0.005720	\checkmark

Horizontal plane

Vertical plane

Closed orbit (corrected)

Chromaticity

Theory of chromaticity

$$
\xi=\underbrace{-\frac{1}{4 \pi} \oint k(s) \beta(s) \mathrm{d} s}_{\text {chromaticity due to quadrupoles }}+
$$

$$
\varepsilon_{\mathrm{x}, \mathrm{y}}=\frac{\delta Q x_{y}}{\frac{\delta P^{\prime}}{P}}
$$

$$
\underbrace{\frac{1}{4 \pi} \oint k_{2}(s) D \beta(s) \mathrm{d} s}_{\text {chromaticity due to sextupoles }}
$$

Global chromaticity correction

$\mathrm{K}_{2}(\operatorname{sext} 1)=95,68861$
$K_{2}($ sext2) $=-46,42698$
$\mathrm{K}_{2}($ sext 1$)=15,5725$
K_{2} (sext2) $=21,9066$

W-vector local correction

$$
\begin{aligned}
& B=\frac{\left(\beta_{1}-\beta_{0}\right)}{\left(\beta_{0} \beta_{1}\right)^{1 / 2}} \text { and } A=\frac{\left(\alpha_{1} \beta_{0}-\alpha_{0} \beta_{1}\right)}{\left(\beta_{0} \beta_{1}\right)^{1 / 2}} \\
& \psi=\frac{1}{2}\left(\mu_{0}+\mu_{1}\right) \text { and } \Delta K=\left(K_{1}-K_{0}\right) \\
& a=\underbrace{\operatorname{Limit}}_{\Delta p / p \rightarrow 0} \frac{A}{\Delta p / p} \quad \text { and } \quad b=\underbrace{\operatorname{Limit}}_{\Delta p / p \rightarrow 0} \frac{B}{\Delta p / p} \\
& \frac{\delta P}{P}=0.001 \% \quad \Delta K=\underbrace{\operatorname{Limit}}_{\Delta p / p \rightarrow 0} \frac{-\Delta K}{\Delta p / p} \quad \text { and } \quad \psi \rightarrow \mu \\
& \boldsymbol{w}=(b+j a)
\end{aligned}
$$

Thin lens approximation

Quadrupole: $\Delta a(0)=-\left(\beta_{0} \beta_{1}\right)^{1 / 2} \Delta k \Delta s \approx \beta_{0} k_{0} \ell_{\mathrm{q}}$
Sextupole: $\Delta a(0)=-\left(\beta_{0} \beta_{1}\right)^{1 / 2} \Delta k \Delta s \approx-\beta_{0} D_{x} k_{n}^{1} \ell_{s}$

Local correction in optimized cell

juas

Result of local correction on W-vector

Dynamic Aperture and Resonances

Lina Hoummi

Summary

1) Introduction to dynamic aperture
2) Resonances
3) Dynamic aperture : First lattice cell.
4) Dynamic Aperture : New lattice.
5) Dynamic Aperture : Improvement.

Conclusion

Introduction to dynamic aperture

Sextupoles create $2^{\text {nd }}$ order magnetic fields:

- => non-linear deformation of the field.
- => non-linear deformation of the phase space.
- => modes of resonance.

!
Resonances can dispel the beam in few turns.

Example: transverse phase space for the ring with sextupoles switched off (a) and on (b).

2) Resonances

Sextupoles:

- Correct the chromaticity.
- Do not change the tune BUT add resonance modes.
- Problem of beam stability.

Tune diagram showing resonance modes for the optimized ring, from WinAgile.

3) Dynamic aperture: First lattice cell

Tracking done with MAD-X.

Problems:

- High chromaticity => high sextupoles strength.
- => Particles lost after 1,75б only.

With:

$$
\sigma_{i}=\sqrt{\beta_{i} \cdot \varepsilon_{G}}=1,7 \mathrm{~mm}
$$

3) Dynamic aperture: New lattice cell

Natural chromaticity is lower than before:

- => lower sextupoles strength
- => Particles now lost after 3,65 σ.

Note:
All focusing and defocusing sextupoles have respectively the same strength.

3) Dynamic aperture: Improvement

Correction sextupoles are in:

- Zero-dispersion zone.
- => do not affect chromaticity.
- => only compensate other sextupoles strength.
- Low- β zone.
- => need more strength to do the compensation.

With:
$K_{\text {corrector }}=2,5 . K_{\text {sextupole }}$
=> Reach $\mathbf{5 0}$.

Conclusion

Dynamic aperture high enough to have a stable beam: 5σ (at least 3σ are required).
Due to:

- Lower natural chromaticity (lattice design, quadrupoles).
- So lower sextupoles strength to correct it.
- So less magnetic field deformations.

Close to resonances, but can be corrected by a tune shifter.

Magnet Design

Magnet Design

Main Specifications For Dipole

Bmax,[T]=1.0918
Bending Radius,[mm]=9160
Bending Angle, $\left[^{\circ}\right]=0.1309$
Magnet Length, $[\mathrm{mm}]=1200$

Iron Yoke Specifications

Overall Length, $[\mathrm{mm}]=10 *$ gap $=560$
Liron, $[\mathrm{mm}]=1166.9$
Pole width , $[\mathrm{mm}]=5 * 56=280$
Overall width , $[\mathrm{mm}]=13 * 56=728$
Overal height , $[\mathrm{mm}]=10 * 56=560$

Coil Specifications
 NI,[A]=24326.5245

Conductor dimensions, $[\mathrm{mm}]=12 * 12$

Gap height $=56 \mathrm{~mm}($ External beam pipe Diameter + Geometric alignment tolerance + Thermal insulation)

Dipole Eddy Current

Selected unit=10. Dipole1
Dipole half gap [m]= 0.028000
Left/lower wall [m]= -0.02850
Right/upper wall $[\mathrm{m}]=0.02850$
Wall thickness [m] $=0.00150000$
Resistivity [ohm m] $=0.0000007200$
Laminated yoke
Pole width [m] $=0.210000$
Lamination thickness [m] $=0.00100000$
End plate thickness [m] $=0.05000000$
Lamination resistivity [ohm m] $=0.0000001000$
End plate resistivity [ohm m] $=0.0000001000$
Path length in iron $[\mathrm{m}]=1.120000$
Lamination: principal mode, $\mathrm{T} 1,1=0.00002496$
End plate: principal mode, $\mathrm{T} 1,1=0.05906533$

Main Specifications For Quadropole

- Magnet Length, $[\mathrm{mm}]=400$
- Aperture diameter,[mm]=28
- Overall Length,[mm]=56.3720
- Liron,[mm]=0.3720
- Overal width,[mm]=7*28=196
- NI,[A]=16964.11

$$
\begin{aligned}
& r_{x} \propto \sigma_{x}=\sqrt{\varepsilon_{x} \beta_{x}} \\
& r_{y} \propto \sigma_{y}=\sqrt{\varepsilon_{y} \beta_{y}}
\end{aligned} \quad r=\max \left(r_{x}, r_{y}\right)
$$

Magnet Cost

 Copper: $60 \mathrm{CHF} / \mathrm{kg}$ for racetrack coils.

Aperture and Vacuum

Vacuum \& aperture

- Input parameters
- Base vacuum pressure : $\mathbf{1 , 3 3 \cdot 1 0 ^ { - 1 0 }} \mathbf{~ m B a r ~ (~} 10^{-10}$ torr)
- Reference value of β function : 150m
- Induced $4,5 \sigma$ minimum radius of the beam pipe : 21mm

Vacuum \& aperture

- Molflow (CERN) simulation software
- Monte-Carlo statistical counting
- Simulation without beam
- No time-dependency

molflow.web.cern.ch

Vacuum \& aperture

- Source of particle
- Outgassing of the beam pipe (1,3.10-12 $\mathbf{~ m B a r . L / s / c m ~}{ }^{\mathbf{2}}$ for stainless steel)
- Sink of particle
- Pumping systems ($50-100 \mathrm{~L} / \mathrm{s}$)
- 5 m cell
- Constant $\emptyset 42 \mathrm{~mm}$
- $\varnothing 40 \mathrm{~mm}$ ports every $0,9 \mathrm{~m}$

Vacuum \& aperture

- 5 pumps every 0,9 m
- $50 \mathrm{~L} / \mathrm{s}(50 \%)$
- $50-75-0-75-50 \mathrm{~L} / \mathrm{s}$
- $1,8 \mathrm{~m}$

Vacuum \& aperture

- Implantation on the beamline
- Dipoles : 1,2 m long

- Pumping cell
- MPS

- Placing the pumps close to $D(s) \neq 0$ area
pumps
(turbo-
pumps)

Vacuum \& aperture

- Ex : NEG pump : SAES Getters NexTorr
- 100L/s

Synchrotron radiation

Goals

- Compute
critical frequency of bending; energy loss per turn; total power radiated;
- Install IDs to reach $5 \mathbf{k e V}$;
- Compute
tuning range; energy loss per turn; total power emitted by the IDs;
- Compute the RF power needed for 300 mA ;
- Install SCW for a UV wavelength.
juas
Joint Universities Accelerator School
\checkmark Compute critical frequency of bending, energy loss per turn, total power radiated;

Bending Radius $\rho(\mathrm{m})$	Energy (GeV)	Lorentz Factor Υ
9.167	3	5871

Critical Frequency

$$
\omega_{c}=\frac{3}{2} \frac{c}{\rho} \gamma^{3}=9.93 \cdot 10^{18} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Critical Energy

$$
\varepsilon_{c}=\hbar \omega_{c}=6.5 \mathrm{keV}
$$

Energy Loss
 per Turn
 per electron

$$
U_{0}(\mathrm{keV})=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=88.46 \frac{E(\mathrm{GeV})^{4}}{\rho(m)}=\mathbf{7 8 1} \mathbf{~ k e V}
$$

Total Power Radiated

$$
P(k W)=\frac{e \gamma^{4}}{3 \varepsilon_{0} \rho} I_{b}=88.46 \frac{E(G e V)^{4} I(A)}{\rho(m)}=235 \mathrm{~kW}
$$

\checkmark Install IDs to reach $5 \mathbf{k e V}$

TYPICAL VALUES FOR AN UNDULATOR	
Pole Tip Field $\operatorname{Br}(\mathrm{T})$	Undulator Period $\lambda_{\boldsymbol{u}}(\mathrm{mm})$
1.3	20

$\varepsilon=\frac{h c}{\lambda}=5 \mathrm{keV} \quad \square \quad \lambda=2.48 \cdot 10^{-10} \mathrm{~m}$
$\lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K^{2}}{2}\right) \quad \quad K=1.77$ for $n=3$
$K=0.168 B_{r} \lambda_{u} e^{-\frac{\pi G a p}{\lambda_{u}}} \longleftrightarrow \underset{\text { (Limit for an undulator) }}{\text { Gap }}=5.83 \mathrm{~mm}>4 \mathrm{~mm}$ For $n=5 \quad K=2,94 \quad G a p=2.55 \mathrm{~mm}<4 \mathrm{~mm}$ juas

\checkmark Compute tuning range

$$
K_{\max }(G a p=4 m m)=0.168 B_{r} \lambda_{u} e^{-\frac{\pi G a p}{\lambda_{u}}}=2.33
$$

$$
\lambda_{n}=\frac{\lambda_{u}}{2 \gamma^{2} n}\left(1+\frac{K^{2}}{2}\right)
$$

$$
0.5 \leq K \leq 2.33
$$

$$
\lambda_{@ K=0.5} \leq \lambda \leq \lambda_{@ K=2.33}
$$

$n=1$

$$
\begin{aligned}
& K=0.5 \\
& K=2.33
\end{aligned} \Longleftrightarrow\left\{\begin{array}{l}
\lambda_{@ K=0.5}=3.26 \cdot 10^{-10} m \\
\lambda_{@ K=2.33}=10.77 \cdot 10^{-10} m
\end{array}\right.
$$

$3.26 \cdot 10^{-10} m \leq \lambda \leq 10.77 \cdot 10^{-10} m$

$$
\lambda=2.48 \cdot 10^{-10} \mathrm{~m}
$$

$n=3$
$K=0.5$
$K=2.33$$\longleftrightarrow\left\{\begin{array}{l}\lambda_{@ K=0.5}=1.09 \cdot 10^{-10} m \\ \lambda_{@ K=2.33}=3.59 \cdot 10^{-10} m\end{array}\right.$
$1.09 \cdot 10^{-10} m \leq \lambda \leq 3.59 \cdot 10^{-10} m$
\checkmark Compute energy loss per turn, total power emitted by the IDs;

TYPICAL VALUES FOR AN UNDULATOR		
Pole Tip Field $\mathrm{Br}(\mathrm{T})$	Undulator Period $\lambda_{\boldsymbol{u}}(\mathrm{mm})$	Undulator Length (m)
1.3	20	2

$$
E_{u}(\mathrm{eV})=0.07257 \frac{E^{2}(\mathrm{GeV}) \cdot \mathrm{K}^{2}}{\lambda_{u}^{2}(m)} L_{u}(m)=10 \mathrm{keV}
$$

$\#$ cells $=\mathbf{2 0}$

$$
\begin{gathered}
E_{u, t o t}=\# \text { cells } \cdot E_{u}=200 \mathrm{keV} \\
P_{u, t o t}=E_{u, t o t} \cdot I=60 \mathrm{~kW}
\end{gathered}
$$

\checkmark Compute the RF power needed for 300 mA ;

$$
P_{R F}=P_{t o t}=P_{u, t o t}+P_{\text {syn_rad }}=295 \mathrm{~kW}
$$

\checkmark Install SCW for a UV wavelength

TYPICAL VALUES FOR A WIGGLER		
Wiggler Parameter K	Wiggler Period $\lambda_{\boldsymbol{u}}(\mathrm{mm})$	Wiggler Length (m)
20	40	2

$$
B_{0}=\frac{K 2 \pi m c}{e \lambda_{u}}=5.35 \mathrm{~T}
$$

$$
\lambda_{1}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)=1.16 \cdot 10^{-7} m
$$

$$
\begin{gathered}
E_{w}=326 \mathrm{keV} \\
P_{w, t o t}=E_{w, t o t} \cdot I=\# \mathrm{cells} \cdot E_{w} \cong 2.0 \mathrm{MW} \\
P_{t o t}=P_{w, t o t}+P_{\text {syn_rad }}=2.235 \mathrm{MW}
\end{gathered}
$$

wiggler - incoherent superposition $\mathrm{K}>1$

Thank you for your attention

Additional slides

juas

Phase shifter

Plotting the quadrupole strenght vs phase shift, we observe a discontinuity.

