Synchrotron Light Source Project JUAS 2017

Group Structure

Content

- Introduction
- Lattice design
- Injection/Extraction
- RF
- Closed orbit
- Chromaticity
- Dynamic Aperture & Resonances
- Magnet considerations
- Aperture & Vacuum considerations
- Synchrotron radiation

Aim

• To upgrade a synchrotron light facility with a new 3 GeV highbrightness ring, whilst keeping the existing 2GeV injector.

Requirements

- Maximum permitted circumference: 700m
- Lattice: 2 super periods connected by 2 dispersion-free regions
- Super period contains DBA 12 bending cells
- 500MHz RF system, 2GeV to 3GeV whilst compensating for radiative losses
- Smallest possible equilibrium horizontal emittance

Existing injector parameters

- Existing injector operates at 500MHz
- Single injector pulse contains 225 bunches, duty cycle of 5s
- Bunch length of 40ps (12mm)
- Bunch intensity of 4x10¹⁰ electrons per bunch
- 1- σ emittances of 0.15 π mm mrad for both in both H & V planes, $\frac{\Delta p}{p} = 10^{-3}$

Lattice design

JUAS Joint Universities Accelerator School Lorenzo Teofili, Heidi Giacomo Riccardo Antonia Paul Ángel Ezgy Antonio Pang

The lattice group

And Riccardo

Lorenzo Teofili Antonia Morabito Riccardo Mirabelli Ezgi Ergenlik Heidi Ayse Rösch Ángel Ferran Pousa Paul Thrane Antonio Paladino Giacomo Mazzacano Chengguo Pang The main task

Improving the lattice of a 2° generation synchrotron light source lattice into a 3° generation one

The key parameter to do that is the emittance! Indeed, the performance of such a machine are optimized if the lattice keep the equilibrium emittance as lower as possible, however, having a reasonable cost!

Standard Cell Double Bend Achromat (DBA)

Cell optimization (Numerical)

Here it is our main Guest The Equilibrium Emittance

$$E_{x,eq} = A \left[\frac{\int_{Dipole} H(s) ds}{L\rho_0 + 2\rho_0^2 k \int_{Dipole} D_x(s) ds} \right]$$

 First Optimization: Chasman-Green 	$\beta_x(0) = 1.549L$ $\alpha_x(0) = 3.873$	$H(s) = \gamma_x D_x^2 + \frac{1}{2}$
 "Super" Optimization Including the gradient 	$\beta_{x}(0) = ?$ $\alpha_{x}(0) = ?$	$\begin{bmatrix} \rho \\ \alpha \\ \gamma \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{11} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{11}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{21}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{21}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{21}t_{21} \\ t_{21}^{2} & -t_{21} \end{bmatrix}_{s} = \begin{bmatrix} c_{11} \\ -t_{11}t_{21} & t_{21}t_{$

$$H(s) = \gamma_{x} D_{x}^{2} + 2\alpha_{x} D_{x} D_{x}^{'} + \beta_{x} D_{x}^{'2}$$

$$\begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{s} = \begin{pmatrix} t_{11}^{2} & -2t_{11} t_{12} & t_{12}^{2} \\ -t_{11} t_{21} & t_{11} t_{22} + t_{12} t_{21} & -t_{12} t_{22} \\ t_{21}^{2} & -2t_{21} t_{22} & t_{22}^{2} \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \\ \gamma \end{pmatrix}_{0}$$

Cell optimization (Numerical)

Joint Universities Accelerator Schoo

Three different cell designs

	Cell Values
Beam size (hor.) (mm)	1.28
Beam size (vert.) (mm)	1.90
Eq. Emittance (mm mrad)	0.026 π
Beta max horizontal (m)	20.08
Beta max vertical (m)	44.25
Maximum Disp. (vert.) (m)	0.59

Beam size (hor.) (mm)	1.7
Beam size (vert.) (mm)	3.9
Eq. Emittance (mm mrad)	0.0014 π
Beta max horizontal (m)	33.65
Beta max vertical (m)	64.8
Maximum Disp. (vert.) (m)	0.23

Beam size (hor.) (mm)	0.52
Beam size (vert.) (mm)	0.53
Eq. Emittance (mm mrad)	0.0026 π
Beta max horizontal (m)	25.08
Beta max vertical (m)	62.67
Maximum Disp. (vert.) (m)	0.3607

Three Different Cell Designs

Cost estimation

"Rough" estimation of components cost Oipole ~ 20K\$

Basic Cell

iversities Accelerator

• 1 Optimized Cell:	• 1°	Optimized Cell	•
---------------------	------	----------------	---

• 2° Optimized Cell:

Element	Number	Lenght [m]	Element	Number	Lenght [m]	Ele	ment	Number	Lenght [m]	
Dipole	2	1.2	Dipole	2	1.2	Dip	ole	2	1.2	
Quadrupole	8	0.4	Quadrupole	12	0.4	Qu	adrupole	6 (+2)	0.4 (0.2)	
Total Cost:3840 K\$			To		Total Cost:3840 K\$					
ε=0.0	ε=0.0260 π mm mrad			ϵ =0.0014 π mm mrad			ε=0.0026 π mm mrad			
εC=99.84 π mm mrad K\$			εC=7.795 π mm mrad K\$				εC=9.9)8 π mm r	nrad K\$	
iuas										

Cost estimation

"Rough" estimation of components cost Dipole ~ 20K\$

Basic Cell

Element	Number	Lenght [m]
Dipole	2	1.2
Quadrupole	8	0.4

Total Cost:3840 K\$

 ϵ =0.0260 π mm mrad

 ϵ C=99.84 π mm mrad K\$

Quadrupole 12

• 2° Optimized Cell:

Element	Number	Lenght [m]
Dipole	2	1.2
Quadrupole	6(+2)	0.4 (0.2)

Total Cost:3840 K\$

 ϵ =0.0026 π mm mrad

εC=9.98 π mm mrad K\$

 ϵ C=7.795 π mm mrad K\$

Total Cost:5280 K\$

 ϵ =0.0014 π mm mrad

0.4

Lattice design geometry

-33.531

59.61421

dQz/dp/p =

gamma tr =

Joint Universities Accelerator School

uas

Vertical chromaticity

Gamma transition

Phase shifter

- Change phase advance to find the best working point.
- Phase advance of the shifter changed from $\Delta\mu$ = 6.2832 to $\Delta\mu$ = 6.40 to explore a big range of phase shifts.
- 6 steps of phase shifts from $\Delta\mu$ = 6.30 to $\Delta\mu$ = 6.40
- To find the matching, 6 conditions were set, with 7 quadrupole gradients used as variables.

Möbius Ring

• Phase shifter and rotator added to the ring.

- Ring lattice replicated two times and run as a transfer line.
- Using single particle tracking:
 - during first turn the particle oscillates in Xplane;
 - during second turn the particle oscillates in Y-plane;
- Successful exchange of X-Y planes.

Injection/Extraction

Axel Poyet Edgar Jérémy Félix, Doru Alexandru Adrian Volker Schramm

Injection Process

1st approach (tricky solution):

- Injection of 4 pulses (225 bunches) in 4 separate periods

Injection Process

- Flat top for 450ns to inject a pulse of 225 bunches
- Ramp up/down ≤50ns to keep a gap of 25 bunches

t_{Ramp Up/Down}

t_{Recharge}

•Recharge

t_{wait}

Available time to ramp the magnet Needed time to recharge capacitors (PS) Waiting time to place next pulse

Injection Process

Simple solution:

Joint Universities Accelerator

-> Ramp up and inject all 4 pulses at once

Extraction Process

- Ramp up extraction kicker within 50ns in the gap
- Complete extraction in one turn
- Dumping in a secure structure (steel)

Injection & Extraction – Basic Design

Injection – Basic Design

Parameters

- Particles at 2 GeV, 8.2 meters long.
- 2 septa at B = 0.55 T.
- 4 kickers at 0.06 T $\rightarrow \theta$ = 5.4 mrad.
- Large space margin at the second septum exit (7.32 cm).
- Matching parameters at insertion point.
 - $\beta_x = \beta_z = 20.8m; \ \alpha_x = \alpha_z = -0.2$
 - $\epsilon_x = \epsilon_z = 0.1500 \text{ pi.mm.mrad}$

Injection – Basic Design

PLAN VIEW X-Y							
Parallel projection							
Grid step 0.950 m							
			╞═╡				
				Ŧ ヿ			
			5	┶┾╾┑			
			L				
			1				
			L_				
				<u> </u>			

Injection – Basic Design

Joint Universities Accelerator Schoo

Main functions in the line

- Required conditions are matched.
- Prior to injection line, there will be :
 - 1 RF cavity
 - 6 quadrupoles (βx, βz, αx, αz, Dx, Dz)
- Functions don't get out of hand :
 - Dispertion is ok since we're out of an RF
 - Beta function will be easy to match
- No need for more elements. Keep cost as low as possible.

Parameters

- Particles at 3 GeV, 17.725 meters long.
- 2 septa at B = 0.83 T
- 4 kickers at 0.06 T $\rightarrow \theta$ = 3.6 mrad
- 2 defocusing quads spread the beam for dumping.
- Minimal space margin at the first septum entrance (4.91 cm).
- Dump structure is 3 meters away from ring.
- Matching parameters at insertion point
 - $\beta_x = \beta_z = 20.8m; \ \alpha_x = \alpha_z = 0.2$
 - $\epsilon_x = \epsilon_z = 0.1500 \text{ pi.mm.mrad}$

Joint Universities Accelerator Schoo

Main functions in the line

- Recquired conditions are matched.
- The quadrupoles are the same as the ring's ones :
 - Reduces cost and assembly complexity.
 - Can be plugged in series and left passive (no powering problem).
- Functions have a satisfying behavior :
 - Dispertion does not matter that much.
 - One very high beta is enough for dumping.

Extraction Process

- Ramp up extraction kicker within 50ns in the gap
- Complete extraction in one turn

Extraction Line:

Extraction Process

Radio Frequency System

Vittorio Bencini Anna Pugelise Marco Diomede Gabriel Tuturcia Mostafa Behtoei Thomas Coldfix **Requirements and design parameters**

Compensate losses due to synchrotron radiation

Requirements

Provide constant acceleration to the electrons to follow up the magnets ramp

Design parameter	Value
C ring [m]	600
R [m]	95.49
ρ [m]	9.17
$\sigma_{\!z}$ bunch [m]	0.012
σ_e bunch [m]	0.001
E _{injection} [GeV]	2
<i>E_{final}</i> [GeV]	3

RF modulation

In order to compute the V_{RF} needed to compensate the losses and accelerate the particle we have to consider

$$\frac{dB}{dt} = const \qquad \qquad \Delta E_{ACC,turn} = \frac{dB}{dt} \times 2\pi R\rho = 1.084 KeV$$

So, taking into account the losses due to synchrotron radiation, it becomes

$$\Delta E_{RF,turn} = \Delta E_{ACC,turn} + \Delta E_{L,turn}$$

$$\Delta E_{L,turn}[KeV] = 88.46 \times \frac{E[GeV]^4}{\rho}$$

RF modulation

The energy gain is followed by modulating
$$V_{RF} \longrightarrow sin\varphi_s = 30^\circ = const$$

Matching at injection

The macthing condition is respected if the ratio between the axis of the bunch ellipse is similar to those of the bucket.

Joint Universities Accelerator School

Matching at injection

Another condition is that, in case the first is not respected, the rotated ellipse still complitely fits into the bucket

$$\begin{vmatrix} \sigma_{z} \\ \sigma_{\varepsilon} \end{vmatrix} bunch = 12$$

$$\begin{vmatrix} \sigma_{z} \\ \sigma_{\varepsilon} \end{vmatrix} bucket = 14$$

$$OK!$$

RF cavity design

Cavity parameter	Value
$V_{RF,peak}$ [KV]	750 KV
$arphi_s$ (above transition) [deg]	150
Gap [mm]	100
<i>R</i> ₀ [MΩ]	3.5
f_{res} [MHz]	500

Using HFSS and CST simulation it was possible to confirm the radius and to compute the shunt impedance of the cavity

 $R = 23.08 \, cm$

From EM theory we know that the relationship between radius and frequency in TM_{01} mode is given by

RF power and cooling

At 3 GeV (wigglers on) the cavities have to be powered with

$$P = \frac{(V_{RF})^2}{R_0} = 1.1 \, MW$$

The efficiency between klystron and cavity is usually in the order of $\varepsilon = 0.85$

$$P_{tot} = P \times (2 - \varepsilon) = 1.27 MW$$

Cooling:

- The power dissipated in the cavity walls induce a ΔT that could affect the performances of the cavities (resonance frequency shift, mechanical stress)
- Colling system is needed

WinAGILE results

Putting the computed V_{RF} values at 2 and 3 GeV (wigglers off) we can see that

- The phase at the center of the cavity is exactly 150 deg (in the figure different reference system and negative phase)
- The E field has different amplitudes but the right shape

Closed Orbit

Andrii Natochii Mirza Sajjad Hussain

Closed Orbit

Closed-orbit correction is a compromise. The orbit is measured at only a finite number of positions and there is only a finite number of correctors.

Our goals:

- \rightarrow Generate errors inside the machine
- \rightarrow Choose correctors and monitors
- \rightarrow Try to correct the orbit of the particle in closed orbit case

Machine errors

Random generated errors:Distribution:Truncated gaussian (4.5 sigmas)Axial shift of all dipoles [m] = 0.001Tilts of all dipoles [rad] = 0.001Trans. shifts of all quads.[m] = 0.0001 (H&V)No. of machines in sample: 1000

Correctors/Monitors of the orbit

# corr	Pk-Pk [m]	Mean [m]	RMS [m]		Initial values	_# corr	Pk-Pk [m]	Mean [m]	RMS [m]
0	0.050201	-0.000036	0.008351	^	iiiitiai values	0	0.064047	0.000189	0.011008	^
1	0.034230	-0.000152	0.004511			1	0.049571	0.000310	0.007059	
2	0.033369	-0.000166	0.004433			2	0.051840	0.000321	0.007338	
3	0.028876	-0.000184	0.004055			3	0.035442	0.000233	0.005486	
4	0.028863	-0.000171	0.004047		\rightarrow	4	0.035533	0.000224	0.005491	
5	0.028869	-0.000167	0.004047		-	5	0.035597	0.000217	0.005496	
6	0.028859	-0.000170	0.004046			6	0.035700	0.000238	0.005494	
7	0.028921	-0.000181	0.004043			7	0.035736	0.000246	0.005496	
8	0.028974	-0.000189	0.004041			8	0.035774	0.000242	0.005499	
9	0.028984	-0.000192	0.004041			9	0.036114	0.000229	0.005523	
10	0.028978	-0.000191	0.004041			10	0.036367	0.000220	0.005540	
11	0.028899	-0.000179	0.004033			11	0.036565	0.000210	0.005552	
12	0.028816	-0.000165	0.004022			12	0.036796	0.000198	0.005567	
13	0.028557	-0.000141	0.003991			13	0.036798	0.000197	0.005567	
14	0.028347	-0.000119	0.003973			14	0.036939	0.000215	0.005569	
15	0.028218	-0.000142	0.003957			15	0.036990	0.000228	0.005570	
16	0.028200	-0.000149	0.003954			16	0.037156	0.000219	0.005581	
17	0.028180	-0.000158	0.003946			17	0.037299	0.000212	0.005590	
18	0.028099	-0.000205	0.003905			18	0.037522	0.000236	0.005593	
19	0.027895	-0.000171	0.003852			19	0.037600	0.000244	0.005597	
20	0.027693	-0.000134	0.003791			20	0.037681	0.000239	0.005601	
21	0.027624	-0.000110	0.003765			21	0.038402	0.000224	0.005643	
22	0.027534	-0.000082	0.003730			22	0.038853	0.000214	0.005671	
23	0.027509	-0.000054	0.003701			23	0.039191	0.000205	0.005693	
24	0.027508	-0.000032	0.003681	~		24	0.039577	0.000195	0.005720	~

Horizontal plane

Vertical plane

Closed orbit (corrected)

Chromaticity

Valerio Dolci

Theory of chromaticity

Joint Universities Accelerator School

las

Global chromaticity correction

K₂(sext1)= 15,5725 K₂(sext2)= 21, 9066

K₂(sext1)=95,68861 K₂(sext2)=-46,42698 W-vector local correction

$$B = \frac{(\beta_1 - \beta_0)}{(\beta_0 \beta_1)^{1/2}} \text{ and } A = \frac{(\alpha_1 \beta_0 - \alpha_0 \beta_1)}{(\beta_0 \beta_1)^{1/2}}$$
$$\psi = \frac{1}{2}(\mu_0 + \mu_1) \text{ and } \Delta K = (K_1 - K_0)$$
$$a = \underbrace{\text{Limit}}_{\Delta p/p \to 0} \frac{A}{\Delta p/p} \text{ and } b = \underbrace{\text{Limit}}_{\Delta p/p \to 0} \frac{B}{\Delta p/p}$$
$$\Delta K = \underbrace{\text{Limit}}_{\Delta p/p \to 0} \frac{-\Delta K}{\Delta p/p} \text{ and } \psi \to \mu$$
$$w = (b + ja)$$

Thin lens approximation

Quadrupole:
$$\Delta a(0) = -(\beta_0 \beta_1)^{1/2} \Delta k \Delta s \approx \beta_0 k_0 \ell_q$$

Sextupole: $\Delta a(0) = -(\beta_0 \beta_1)^{1/2} \Delta k \Delta s \approx -\beta_0 D_x k_n^1 \ell_s$

Joint Universities Accelerator School

as

Local correction in optimized cell

Result of local correction on W-vector

Joint Universities Accelerator School

Dynamic Aperture and Resonances

Lina Hoummi Sofia Kostoglou Jean Cazabonne

Summary

1) Introduction to dynamic aperture

2) Resonances

- 3) Dynamic aperture : First lattice cell.
- 4) Dynamic Aperture : New lattice.
- 5) Dynamic Aperture : Improvement.

Conclusion

Introduction to dynamic aperture

Sextupoles create 2nd order magnetic fields:

- => **non-linear** deformation of the field.
- => non-linear deformation of the **phase space**.
- => modes of **resonance**.

Resonances can dispel the beam in few turns.

Example: transverse phase space for the ring with sextupoles switched off (a) and on (b).

Joint Universities Accelerator Schoo

2) Resonances

Sextupoles:

- Correct the chromaticity.
- Do not change the **tune** <u>BUT</u> add resonance modes.
- Problem of **beam stability**.

Tune diagram showing resonance modes for the optimized ring, from **WinAgile**.

3) Dynamic aperture: First lattice cell

Problems:

- High chromaticity => high sextupoles strength.
- > Particles lost after 1,75σ only.

With:

$$\sigma_i = \sqrt{\beta_i \cdot \varepsilon_G} = 1,7 \text{ mm}$$

3) Dynamic aperture: New lattice cell

Natural chromaticity is lower than before:

- => lower sextupoles strength
- => Particles now lost after 3,65σ.

<u>Note</u>:

All focusing and defocusing sextupoles have respectively the **same strength**.

3) Dynamic aperture: Improvement

Correction sextupoles are in:

- Zero-dispersion zone.
- => do not affect chromaticity.
- => only compensate other sextupoles strength.
- Low-β zone.
- => need more strength to do the compensation.

With:

 $K_{corrector} = 2,5. K_{sextupole}$ => Reach **5o**.

Conclusion

Dynamic aperture high enough to have a **stable beam**: 5σ (at least 3σ are required).

Due to:

- Lower natural chromaticity (lattice design, quadrupoles).
- So lower sextupoles strength to correct it.
- So less magnetic field **deformations**.

Close to resonances, but can be corrected by a **tune shifter**.

Magnet Design

Mina Abbaslo Elham Salehi

Magnet Design

Main Specifications For Dipole

Bmax,[T]=1.0918

Bending Radius,[mm]=9160

Bending Angle,[°]=0.1309

Magnet Length,[mm]=1200

Iron Yoke Specifications

Overall Length,[mm]=10*gap=560 Liron,[mm]=1166.9 Pole width ,[mm]=5*56=280 Overall width ,[mm]=13*56=728 Overal height ,[mm]=10*56=560

Coil Specifications

NI,[A]=24326.5245 Conductor dimensions,[mm]=12*12

Gap height= 56mm (External beam pipe Diameter + Geometric alignment tolerance + Thermal insulation)

Dipole Eddy Current

Selected unit=10. Dipole1 Dipole half gap [m] = 0.028000Left/lower wall [m] = -0.02850Right/upper wall [m] = 0.02850Wall thickness [m] =0.00150000 Resistivity [ohm m] =0.0000007200 Laminated yoke Pole width [m] = 0.210000Lamination thickness [m] =0.00100000 End plate thickness [m] =0.05000000 Lamination resistivity [ohm m] =0.000001000 End plate resistivity [ohm m] =0.0000001000 Path length in iron [m] = 1.120000Lamination: principal mode, T 1,1 = 0.00002496End plate: principal mode, T 1, 1 = 0.05906533

Main Specifications For Quadropole

- Magnet Length,[mm]=400
- Aperture diameter,[mm]=28
- Overall Length,[mm]=56.3720
- Liron,[mm]=0.3720
- Overal width,[mm]=7*28=196
- NI,[A]=16964.11

$$r_{x} \propto \sigma_{x} = \sqrt{\varepsilon_{x}\beta_{x}}$$
$$r_{y} \propto \sigma_{y} = \sqrt{\varepsilon_{y}\beta_{y}}$$

$$r = \max(r_x, r_y)$$

Magnet Cost

Aperture and Vacuum

- Input parameters
 - Base vacuum pressure : **1,33.10**⁻¹⁰ **mBar** (10⁻¹⁰ torr)
 - Reference value of β function : **150m**
 - Induced 4,5σ minimum radius of the beam pipe : **21mm**

- Molflow (CERN) simulation software
 - Monte-Carlo statistical counting
 - Simulation without beam
 - No time-dependency

molflow.web.cern.ch

- Source of particle
 - Outgassing of the beam pipe (1,3.10⁻¹² mBar.L/s/cm² for stainless steel)
- Sink of particle
 - Pumping systems (50 100 L/s)
- 5m cell
- Constant Ø42mm
- Ø40mm ports every 0,9m

- 5 pumps every 0,9 m
- 50 L/s (50%)

- 50 75 0 75 50 L/s
- 1,8 m

Vacuum & aperture

- Implantation on the beamline
 - Dipoles : 1,2 m long

• MPS

QF1

OF2

S4

Vacuum & aperture

- Ex : NEG pump : SAES Getters NexTorr
 - 100L/s

Synchrotron radiation

Marco Diomede Anna Pugelise

Goals

• Compute

critical frequency of bending; energy loss per turn; total power radiated;

- Install IDs to reach 5 keV;
- Compute

tuning range; energy loss per turn; total power emitted by the IDs;

- Compute the **RF power** needed for 300mA;
- Install SCW for a UV wavelength.

Compute critical frequency of bending, energy loss per turn, total power radiated;

	Bending Radius ρ (m)	Energy (GeV)	Lorentz Factor Y
	9.167	3	5871
Critica	I Frequency	$\omega_c = \frac{3}{2} \frac{c}{\rho} \gamma^3 = 9.93.$	$10^{18} \frac{rad}{s}$
Critic	cal Energy	$\varepsilon_c = \hbar \omega_c = 6.5$	keV
Energy Loss per Turn per electron		$U_0(keV) = \frac{e^2\gamma^4}{3\varepsilon_0\rho} = 88.46$	$5\frac{E(GeV)^4}{\rho(m)} = 781 keV$
	al Power P adiated	$P(kW) = \frac{e\gamma^4}{3\varepsilon_0\rho}I_b = 88.4$	$6\frac{E(GeV)^4I(A)}{\rho(m)} = 23$

Joint Universities Accelerator School

✓ Install IDs to reach 5 keV

TYPICAL VALUES FOR AN UNDULATOR				
Pole Tip Field Br (T)	Undulator Period λ_u (mm)			
1.3	20			

✓ Compute **tuning range**

Joint Universities Accelerator School

✓ Compute energy loss per turn, total power emitted by the IDs;

TYPICAL VALUES FOR AN UNDULATOR					
Pole Tip Field Br (T)	Undulator Period λ_u (mm)	Undulator Length (m)			
1.3	20	2			

$$E_u(eV) = 0.07257 \frac{E^2 (GeV) \cdot K^2}{\lambda_u^2(m)} L_u(m) = 10 \ keV$$

$$#cells = 20 E_{u,tot} = #cells \cdot E_u = 200 keV$$

$$P_{u,tot} = E_{u,tot} \cdot I = 60 \ kW$$

✓ Compute the **RF power needed** for 300mA;

$$P_{RF} = P_{tot} = P_{u,tot} + P_{syn_rad} = 295 \, kW$$

✓ Install **SCW** for a UV wavelength

TYPICAL VALUES FOR A WIGGLER					
Wiggler Parameter K	Wiggler Period λ_u (mm)	Wiggler Length (m)			
20	40	2			

$$B_0 = \frac{K \, 2\pi \, mc}{e \lambda_u} = 5.35 \, \mathrm{T} \qquad \qquad \lambda_1 = \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} \right) = 1.16 \cdot 10^{-7} m$$

 $E_{w} = 326 \ keV$

$$P_{w,tot} = E_{w,tot} \cdot I = \#cells \cdot E_w \cong 2.0 MW$$

$$P_{tot} = P_{w,tot} + P_{syn_rad} = 2.235 MW$$

Thank you for your attention

Additional slides

Phase shifter

Plotting the quadrupole strenght vs phase shift, we observe a discontinuity.

