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Part 1.

Basics, single-particle dynamics
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Luminosity run of a typical storage ring
In a storage ring: the protons are accelerated and stored for ⇠ 12 hours

The distance traveled by particles running at nearly the speed of light, v ⇡ c , for
12 hours is

distance ⇡ 12⇥ 10

11

km

! this is about 100 times the distance from Sun to Pluto and back !
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Introduction and basic ideas

It’s a circular machine: we need a transverse deflecting force!the Lorentz force

~
F = q ·

⇣
~
E + ~

v ^ ~
B

⌘

where, in high energy machines, |~v | ⇡ c ⇡ 3 · 108 m/s. Usually there is no electric
field, and the transverse deflection is given by a magnetic field only.

Example

B = 1 T !

F = q · 3 · 108 m

s

· 1 T

= q · 3 · 108 m

s

· 1 Vs

m

2

= q · 300
MV

m

Notice that there is a technical limit
for an electric field:

E . 1
MV

m
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Therefore in an accelerator, use magnetic fields wherever it’s possible

Lorentz force FL = qvB

Centripetal force Fcentr = �m
0

v2

⇢

�m
0

v ⇤2
⇢ = q�vB

9
>=

>;

P = m0�v = mv "momentum"
B⇢ = "beam ridigity"

P
q =B⇢
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Dipole magnets: the magnetic guide
I Dipole magnets:

I define the ideal orbit
I in a homogeneous field created by

two flat pole shoes, B = µ
0

nI
h

I Normalise magnetic field to momentum:

P

q

= B⇢ ) 1
⇢
=

qB

P

[m�1] B = [T ]; P=

GeV

c

�
; 1 T=

1 V · 1 s

1 m

2

I Example: the LHC, accelerating protons (q=1 e)

B = 8.3 T

p = 7000 GeV
c

9
=

;

1
⇢
= e

8.3 Vs
m2

7000 · 109 eV
c

=
8.3s · 3 · 108 m

s

7000 · 109 m^2
=

= 0.333 · 8.3
7000

1
m

=
1

2.53
1
km
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Dipole magnets: the magnetic guide

Very important rule of thumb:

1
⇢ [m]

⇡ 0.3
B [T ]

P [GeV /c]

In the LHC, ⇢ = 2.53 km. The circumference 2⇡⇢ = 15.9 km ⇡ 60% of the entire
LHC.

The field B is ⇡ 1 . . . 8 T

which is a sort of “normalised bending strength”, normalised to the momentum of
the particles.
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The focusing force

~
F = q ·

⇣
~
E + ~

v ^ ~
B

⌘

Remember the 1d harmonic oscillator: F = �k x
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Reminder: the 1d Harmonic oscillator
Restoring force

F = �k x

Equation of motion:

x

00 = � k

m

x

which has solution:

x (t) = A cos (!t + �)=
or

a1 cos (!t) + a2 sin (!t)

I F , restoring force, N or MeV/m
I k, spring constant or focusing strength, N/m or MeV/m2

I ! =
q

k
m = 2⇡f , angular velocity, rad/s

I �, initial phase, rad

I f , rotation frequency, 1/s or Hz
I m = m

0

�, particle’s mass, MeV/c2

I m
0

, particle’s rest mass, MeV/c2

I A, oscillation amplitude, m
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Exercise
The following plot represents the trajectories of three particles traveling in a transfer line with
constant focusing strength.
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Among the three particles, one is significantly off-momentum. Which one is it (full, small-dot or
large-dot line)? Is its rigidity higher or lower than the on-momentum particles?
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Quadrupole magnets: the focusing force
Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly-increasing Lorentz force, thru a linearly-increasing magnetic field:

Bx = gy

By = gx

)
Fx = �qvzgx
Fy = qvzgy

Gradient of a quadrupole magnet:

g =
2µ0nI

r

2
aperture


T

m

�
=

Bpoles

raperture


T

m

�

I LHC main quadrupole magnets:
g ⇡ 25 . . . 235 T/m

the arrows show the force exerted
on a particle

Divide by p/q to find the normalised focusing strength, k:

k =
g

P/q

⇥
m

�2⇤ ) g =


T

m

�
; q = [e] ;

P

q

=


GeV
c · e

�
=


GV

c

�
=[T m]

A simple rule: k

⇥
m

�2⇤ ⇡ 0.3
g [T/m]

P/q [GeV /c/e]
.
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Focal length of a quadrupole

The focal length of a quadrupole is f = 1
k·L [m], where L is the quadrupole length:
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Towards the equation of motion
Linear approximation:

I the ideal particle ) stays on the design

orbit (i.e. x , y ,Px ,Py = 0; P = P0)
I any other particle ) has coordinates x , y

I which are small quantities: x , y ⌧ ⇢
I

Px , Py are small, and P 6= P0

I only linear terms in x and y of B are taken
into account

Let’s recall some useful relativistic formulæ and definitions:

P0 = m0 � v0 reference momentum
P = P0 (1 + �) total momentum

� = (P � P0) /P0 relative momentum offset

E =
p

P

2
c

2 +m

2
0c

4 = m0 � c

2 = K +m0 c
2 total energy

K = E �m0 c
2 kinetic energy

� = v
c
= Pc

E
; � = 1p

1��2

= E
m

0

c2
relativistic beta and gamma
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Phase-space coordinates
The state of a particle is represented with a 6-dimensional phase-space vector:

�
x , x 0, y , y 0, z, �

�

where x 0 and y 0 are the transverse angles:

with
x [m]

x0 =
dx
ds

=
dx
dt

dt
ds

=
Vx

Vz
=

Px

Pz
⇡

Px

P
0

[rad]

y [m]

y 0 =
dy
ds

=
dy
dt

dt
ds

=
Vy

Vz
=

Py

Pz
⇡

Py

P
0

[rad]

z [m]

� =
�P

P
0

=
P � P

0

P
0

[#]

where P
0

is the momentum of the reference particle (reference momentum), and P = P
0

(1 + �)
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Exercise: Phase space representations

1. Consider a cathode, located at position s0 with radius w , emitting particles. What does the
phase space look like for the particles just created? Which portion of the phase space is
occupied by the emitted particles?

Hint: the particle source in the configuration space
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Towards the equation of motion
Taylor expansion of the By field:

By (x) = By0 +
@By

@x
x +

1
2
@2

By

@x2 x

2 +
1
3!

@3
By

@x3 x

3 + . . .

Now we drop the suffix ’y’ and normalise to the magnetic rigidity p/q = B⇢

B (x)

P/q
=

B0

B0⇢
+

g

P/q
x +

1
2

g

0

P/q
x

2 +
1
3!

g

00

P/q
x

3 + . . .

=
1
⇢
+ kx +

1
2
mx

2 +
1
3!
nx

3 + . . .

In the linear approximation, only the terms linear in x and y are taken into account:
I dipole fields, 1/⇢
I quadrupole fields, k

It is more practical to use “separate function” magnets, rather than combined ones:

I split the magnets and optimise them regarding their function
I bending
I focusing, etc.

16/147 A. Latina - Transverse beam dynamics - JUAS 2017



The equation of motion in radial coordinates
Let’s consider a local segment of one particle’s trajectory:

and recall the radial centrifugal acceleration: ar =
d2⇢

dt2
� ⇢

✓
d✓
dt

◆2

=
d2⇢

dt2
� ⇢!2.

I For an ideal orbit: ⇢ = const ) d⇢
dt = 0

)the force is
Fcentrifugal = �m⇢!2 = �mv

2/⇢

FLorentz = qByv = �Fcentrifugal
) P

q = By⇢

I For a general trajectory: ⇢! ⇢+ x :

Fcentrifugal = mar = �FLorentz ) m

"
d2

dt2
(⇢+ x)� v

2

⇢+ x

#
= �qByv
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F = m

d

2

dt

2 (⇢+ x)
| {z }

term 1

� mv

2

⇢+ x| {z }
term 2

= �qByv

I Term 1: As ⇢ =const...

m

d2

dt2
(⇢+ x) = m

d2

dt2
x

I Term 2: Remember: x ⇡ mm whereas ⇢ ⇡ m ! we develop for small x

remember Taylor expansion:
1

⇢+ x

⇡ 1
⇢

✓
1� x

⇢

◆
f (x) = f (x0)+

+ (x � x0) f 0 (x0) +
(x�x

0

)2

2! f

00 (x0) + · · ·

m

d

2
x

dt

2 �
mv

2

⇢

✓
1� x

⇢

◆
= �qByv
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The guide field in linear approximation By = B0 + x

@By

@x

m

d2
x

dt2
� mv

2

⇢

✓
1� x

⇢

◆
= �qv

⇢
B0 + x

@By

@x

�
let’s divide by m

d2
x

dt2
� v

2

⇢

✓
1� x

⇢

◆
= �qvB0

m

� x

qvg

m

Independent variable: t ! s

dx
dt

=
dx
ds

ds
dt

= x

0
v

d

2
x

dt2
=

d
dt

dx
dt

=
d
dt

0

BB@
dx
ds|{z}
x0

ds
dt|{z}
v

1

CCA =
d
dt

(x 0v) =

=
d
ds

ds
dt|{z}
v

(x 0v) =
d
ds

�
x

0
v

2� = x

00
v

2 + x

0

�
��2v
dv
ds

x

00
v

2 � v

2

⇢

✓
1� x

⇢

◆
= �qvB0

m

� x

vg

m

let’s divide by v

2
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x

00 � 1
⇢

✓
1� x

⇢

◆
= �qB0

mv

� x

qg

mv

x

00 � 1
⇢
+

x

⇢2 = � B0

P/q
� xg

P/q

x

00

◆
◆◆�1
⇢
+

x

⇢2 =
◆
◆◆�1
⇢
� kx

Remember:

mv = p

Normalise to the momentum of
the particle:

1
⇢
=

B0

P/q
[m�1]; k =

g

P/q
[m�2]

x

00 + x

✓
1
⇢2 + k

◆
= 0

Equation for the vertical motion

I 1
⇢2

= 0 usually there are not vertical bends
I

k  ! �k quadrupole field changes sign

y

00 � ky = 0
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Weak focusing
I “Weak” focusing:

x

00 (s) +

✓
1
⇢2 + k

◆

| {z }
focusing effect

x (s) = 0

there is a focusing force, 1
⇢2

, even without a quadrupole gradient,

k = 0 ) x

00 = � 1
⇢2 x

even without quadrupoles there is retrieving force (focusing) in the bending
plane of the dipole magnets

I In large machine this effect is very weak...

Mass spectrometer: particles are separated

according to their energy and focused due to

the 1/⇢ effect of the dipole
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Effective length

B0 · Leff =

ˆ lmag

0
B (s) ds
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Solution of the trajectory equations: focusing quadrupole
Definition:

horizontal plane K = 1/⇢2 + k

vertical plane K = �k

�
x

00 + Kx = 0

This is the differential equation of a harmonic oscillator ... with spring constant
K . We make an ansatz:

x (s) = a1 cos (!s) + a2 sin (!s)

General solution: a linear combination of two independent solutions:

x

0 (s) = �a1! sin (!s) + a2! cos (!s)

x

00 (s) = �a1!
2 cos (!s) + a2!

2 sin (!s) = �!2
x (s) ! ! =

p
K

General solution, for K > 0:

x (s) = a1 cos

⇣p
Ks

⌘
+ a2 sin

⇣p
Ks

⌘
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We determine a1, a2 by imposing the following boundary conditions:

s = 0 !
(
x (0) = x0, a1 = x0

x

0 (0) = x

0
0, a2 = x0

0p
K

Horizontal focusing quadrupole, K > 0:

x (s) = x0 cos
⇣p

Ks

⌘
+ x

0
0

1p
K

sin
⇣p

Ks

⌘

x

0 (s) = �x0
p
K sin

⇣p
Ks

⌘
+ x

0
0 cos

⇣p
Ks

⌘

For convenience we can use a matrix formalism:

✓
x

x

0

◆

s
1

= Mfoc

✓
x0

x

0
0

◆

s
0

For a quadrupole of length L:

Mfoc =

0

@
cos

⇣p
KL

⌘
1p
K

sin
⇣p

KL

⌘

�
p
K sin

⇣p
KL

⌘
cos

⇣p
KL

⌘

1

A
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Defocusing quadrupole
The equation of motion is

x

00 + Kx = 0

with K < 0

Remember:
f (s) = cosh (s)
f

0 (s) = sinh (s)
The solution is in the form:

x (s) = a1 cosh (!s) + a2 sinh (!s)

with ! =
p
|K |. For a quadrupole of length L the transfer matrix reads:

Mdefoc =

0

@
cosh

⇣p
|K |L

⌘
1p
|K |

sinh
⇣p

|K |L
⌘

p
|K | sinh

⇣p
|K |L

⌘
cosh

⇣p
|K |L

⌘

1

A

Notice that for a drift space, i.e. when K = 0 ! Mdrift =

✓
1 L

0 1

◆
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Summary of the transfer matrices
I Focusing quad, K > 0

Mfoc =

0

@
cos

⇣p
KL

⌘
1p
K

sin
⇣p

KL

⌘

�
p
K sin

⇣p
KL

⌘
cos

⇣p
KL

⌘

1

A

I Defocusing quad, K < 0

Mdefoc =

0

@
cosh

⇣p
|K |L

⌘
1p
|K |

sinh
⇣p

|K |L
⌘

p
|K | sinh

⇣p
|K |L

⌘
cosh

⇣p
|K |L

⌘

1

A

I Drift space, K = 0

Mdrift =

✓
1 L

0 1

◆

With the assumptions we have made, the motion in the horizontal and vertical
planes is independent: “... the particle motion in x and y is uncoupled”
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Thin-lens approximation of a quadrupole magnet

When the focal length f of the quadrupolar lens is much bigger than the length of
the magnet itself, LQ

f =
1

k · L � LQ

we can derive the limit for L! 0 while keeping constant f , i.e. k · LQ = const.

The transfer matrices are

Mx =

✓
1 0
� 1

f 1

◆
My =

✓
1 0
1
f 1

◆

focusing, and defocusing respectively.

This approximation (yet quite accurate, in large machines) is useful for fast
calculations... (e.g. for the guided studies!)
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Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

Mtotal = MQF ·MD ·MBend ·MD ·MQD · · · ·
✓

x

x

0

◆

s
2

= Ms
1

!s
2

·Ms
0

!s
1

·
✓

x

x

0

◆

s
0

In each accelerator element the particle trajectory corresponds to the movement of
a harmonic oscillator.

...typical values are:

x ⇡ mm

x

0  mrad
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Properties of the transfer matrix M

The transfer matrix M has two important properties:

I (with no acceleration) its determinant is 1

det (M) = 1

(Liouville’s theorem)

I provides a stable motion over N turns, with N !1, if and only if:

trace (M)  2

(Stability condition)
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Extra: Stability condition
Question: Given a periodic lattice with generic transport map M,

M =

✓
a b

c d

◆

under which condition the matrix M provides stable motion after N turns (with
N !1)?

xN = M · . . . ·M ·M ·M| {z }
N turns, with N!1

x0 = M

N
x0

The answer is simple: the motion is stable when all elements of MN are finite, with
N !1. But... how do we compute M

N with N !1?

Remember:

I det (M) = ad � bc = 1
I trace (M) = a+ d

If we diagonalise M, we can rewrite it as:

M = U ·
✓

�1 0
0 �2

◆
· UT

where U is some unitary matrix, �1 and �2 are the eigenvalues.
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Extra: Stability condition (cont.)
What happens if we consider N turns?

M

N = U ·
✓

�N
1 0
0 �N

2

◆
· UT

Notice that �1 and �2 can be complex numbers. Given that det (M) = 1, then

�1 · �2 = 1 ! �1 =
1
�2

! �1,2 = e

±i x

) to have a stable motion, x must be real: x 2 R.
Now we can find the eigenvalues through the characteristic equation:

det (M � �I ) = det
✓

a� � b

c d � �

◆
= 0

�2 � (a+ d)�+ (ad � bc) = 0
�2 � trace (M)�+ 1 = 0

trace (M) = �+ 1/� =

= e

ix + e

�ix = 2 cos x
From which derives the stability condition:

since x 2 R ! |trace (M)|  2
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Orbit and tune

Tune: the number of oscillations per turn.

Example:

64.31

59.32

Relevant for beam stability studies is : the non-integer part
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Extra: Summary of momenta and angles definitions

P = P
0

(1 + �) total momentu w.r.t. reference momentum

P =
q

P2

x + P2

y + P2

z total momentum

• General convention: lower-case momenta: normalised to P
0

p =
P

P
0

= 1 + �

px =
Px

P
0

x0 =
dx
ds

=
Vx

Vz
=

Px

Pz
⇡

Px

P
0

py =
Py

P
0

y 0 =
dy
ds

=
Vy

Vz
=

Py

Pz
⇡

Py

P
0

pz =
Pz

P
0

=

q

P2 � P2

x � P2

y

P
0

=
q

(1 + �)2 � p2

x � p2

y ⇡

⇡ (1 + �)

 

1 �
1
2

p2

x + p2

y

(1 + �)2

!

=

= 1 + � �
1
2

p2

x + p2

y

1 + �
⇡ 1 + � for small px and py
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Extra: From a Cartesian to a curved reference system

We use a Curved Reference System: the Frenet–Serret rotating frame

Curvilinear ! Cartesian Cartesian ! Curvilinear

(x, y , z) ! (X , Y , Z) (X , Y , Z) ! (x, y , z)

z = s � �ct s = ⇢ arctan Z
X+⇢

X = (⇢ + x) cos
s

⇢
� ⇢

Y = y

Z = (⇢ + x) sin
s

⇢

x =
q

(X + ⇢)2 + Z2 � ⇢

y = Y

z = s � �ct

Px = PX cos
s

⇢
+ PZ sin

s

⇢

Py = PY

PX = Px cos
s

⇢
� Pz sin

s

⇢

PY = Py

Z

X

x

ρ

s

z

The y and Y axes are parallel and orthogonal to this page.
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Summary
beam rigidity: B⇢ = P

q

bending strength of a dipole: 1
⇢ [m�1] = 0.2998·B

0

[T]
P [GeV/c]

focusing strength of a quadruple: k [m�2] = 0.2998·g
P [GeV/c]

focal length of a quadrupole: f = 1
k·L

Q

equation of motion: x

00 +
⇣

1
⇢2

+ k

⌘
x = 0

solution of the eq. of motion: xs
2

= M · xs
1

. . . with M ⌘
✓

C S

C

0
S

0

◆

e.g.: MQF =

0

@
cos
⇣p

KL

⌘
1p
K

sin
⇣p

KL

⌘

�
p
K sin

⇣p
KL

⌘
cos
⇣p

KL

⌘

1

A,

MQD =

0

@
cosh

⇣p
|K |L

⌘
1p
|K |

sinh
⇣p

|K |L
⌘

p
|K | sinh

⇣p
|K |L

⌘
cosh

⇣p
|K |L

⌘

1

A , MD =

✓
1 L

0 1

◆
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Part 2.

Optics Functions and Twiss
Parameters
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Envelope
So far we have studied the motion of a particle.
Question: what will happen, if the particle performs a second turn ?

I ... or a third one or ... 1010 turns ...

37/147 A. Latina - Transverse beam dynamics - JUAS 2017

The Hill’s equation

In 19th century George William Hill, one of the greatest master of celestial
mechanics of his time, studied the differential equation for “motions with periodic
focusing properties”: the “Hill‘s equation”

x

00 (s) + K (s) x (s) = 0

with:
I a restoring force 6= const
I

K (s) depends on the position s

I
K (s + L) = K (s) periodic function, where L is the “lattice period”

We expect a solution in the form of a quasi harmonic oscillation: amplitude and
phase will depend on the position s in the ring.
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The beta function
General solution of Hill’s equation:

x (s) =
p
"
p
� (s) cos (µ (s) + µ0) (1)

", µ0 =integration constants determined by initial conditions

� (s) is a periodic function given by the focusing properties of the lattice $
quadrupoles

� (s + L) = � (s)

Inserting Eq. (1) in the equation of motion, we get (Floquet’s theorem) the
following result

µ (s) =

ˆ s

0

ds
� (s)

µ (s) is the “phase advance” of the oscillation between the points 0 and s along
the lattice. For one complete revolution, µ (s) is the number of oscillations per
turn, or “tune” when normalised to 2⇡

Q =
1
2⇡

˛
ds

� (s)

" is the Courant-Snyder invariant.
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The beam ellipse
General solution of the Hill’s equation

(
x (s) =

p
"
p
� (s) cos (µ (s) + µ0) (1)

x

0 (s) = �
p
"p

�(s)
{↵ (s) cos (µ (s) + µ0) + sin (µ (s) + µ0)} (2)

From Eq. (1) we get

cos (µ (s) + µ0) =
x (s)

p
"
p

� (s)

↵ (s) = �1
2
�0 (s)

� (s) =
1 + ↵ (s)2

� (s)

Insert into Eq. (2) and solve for "

" = � (s) x (s)2 + 2↵ (s) x (s) x 0 (s) + � (s) x 0 (s)2

I " is a constant of the motion, i.e. the Courant-Snyder invariant or Action
I it is a parametric representation of an ellipse in the xx

0 space
I the shape and the orientation of the ellipse are given by ↵, �, and � ) these are

the Twiss parameters
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Learning from the phase-space ellipse

" = � (s) x (s)2 + 2↵ (s) x (s) x 0 (s) + � (s) x 0 (s)2

Liouville: in an ideal storage
ring, if there is no beam energy
change, the area of the ellipse in
the phase space x�x 0 is constant

A = ⇡ · " = const

The area of ellipse, ⇡ · " , is an intrinsic beam parameter and cannot be changed
by the focal properties.
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Learning from the phase-space ellipse
Given the particle trajectory:

x (s) =
p
"
p
� (s) cos (µ (s) + µ0)

I the max. amplitude is:
x̂ (s) =

p
"�

I the corresponding angle, in x̂ (s), can be found putting x̂ (s) =
p
"� in Eq.

" = � (s) x (s)2 + 2↵ (s) x (s) x 0 (s) + � (s) x 0 (s)2

and solving for x 0:

" = � · ✏� + 2↵
p
"� · x 0 + �x 02

! x̂

0 = �↵
r

"

�
 

Important remarks:
I A large �-function corresponds to a large beam size and a small beam

divergence
I wherever � reaches a maximum or a minimum, ↵ = 0 (and x

0 = 0)
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Particle tracking in a storage ring

Computation of x and x

0 for each linear el-
ement, according to matrix formalism. We
plot x and x

0 as a function of s
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Particle tracking and beam ellipse

For each turn x , x 0 at a given position s1 and plot in the phase-space diagram

Plane: x � x

0
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Evolution of the phase-space ellipse
Let’s repeat the remarks:

I A large �-function corresponds to a large beam size and a small beam divergence
I In the middle of a quadrupole, � is maximum, and ↵ = 0 ) x

0 = 0

[VIDEOS!]
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Particles distribution, beam matrix, and emittance
To track a beam of particles, let’s assume with Gaussian distribution, the beam ellipse can be
characterised by a “beam matrix” ⌃

The equation of an ellipse can be written in ma-
trix form:

XT⌦�1X = "

with X =

✓
x
x 0

◆
and ⌦ =

✓
� �↵
�↵ �

◆
.

For many particles we can define ⌃ as:

⌃ =

✓
�11 �12
�21 �22

◆
=

✓ ⌦
x2↵ hxx 0i

hx 0xi
⌦
x 02

↵
◆

= ✏⌦

the covariance matrix of the particles distribution
represents an ellipse.

I Given a particles distribution, we define the geometric emittance ✏ as a function of the
ellipse area:

✏ =
p

det⌃ =
q

det
�
cov

�
x, x

0�� = Area of the ellipse/⇡

with slope r21 = �21/
p
�11�22

I The emittance ✏ is the area covered by the particles in the transverse x-x 0 phase-space, and
it is preserved along the beam line (Liouville’s theorem)
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Geometric and Normalised Emittance

The geometric emittance ✏ we have seen so far, utilised e.g. to compute the beam size, is a
constant of motion only when there is no acceleration (P = constant).
In presence of acceleration Pz ! Pz +�Pz , so that x 0 = Px

Pz
goes to x 0 = Px

Pz+�Pz
, and the area

of the phase space shrinks. We therefore define the normalised emittance:

✏N
def
= �relativistic · �relativistic · ✏geometric

✏N is a constant of motion even in case of acceleration.
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Emittance of an ensemble of particles
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The transfer matrix M , in terms of Twiss parameters

As we have already seen, a general solution of the Hill’s equation is:

x (s) =
p
"� (s) cos (µ (s) + µ0)

x

0 (s) = �
r

"

� (s)
[↵ (s) cos (µ (s) + µ0) + sin (µ (s) + µ0)]

Let’s remember some trigonometric formulæ:

sin (a± b) = sin a cos b ± cos a sin b,
cos (a± b) = cos a cos b ⌥ sin a sin b, . . .

then,

x (s) =
p

"� (s) (cosµ (s) cosµ0 � sinµ (s) sinµ0)

x

0 (s) = �
r

"

� (s)
[↵ (s) (cosµ (s) cosµ0 � sinµ (s) sinµ0)+

+ sinµ (s) cosµ0 + cosµ (s) sinµ0]
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At the starting point, s (0) = s0, we put µ (0) = 0. Therefore we have

cosµ0 =
x0p
"�0

sinµ0 = � 1p
"

✓
x

0
0

p
�0 +

↵0x0p
�0

◆

If we replace this in the formulæ, we obtain:

x (s) =

s

�s

�
0

{cosµs + ↵
0

sinµs} x
0

+
n

p

�s�0

sinµs

o

x0
0

x0 (s) =
1

p
�s�0

{(↵
0

� ↵s ) cosµs � (1 + ↵
0

↵s ) sinµs} x
0

+

s

�
0

�s
{cosµs � ↵s sinµs} x0

0

The linear map follows easily,

✓

x
x0

◆

s

= M

✓

x
x0

◆

0

! M =

0

@

q

�s
�
0

(cosµs + ↵
0

sinµs )
p
�s�0

sinµs

(↵
0

�↵s ) cos µs�(1+↵
0

↵s ) sin µsp
�s�

0

q

�
0

�s
(cosµs � ↵s sinµs )

1

A

I We can compute the single particle trajectories between two locations in the ring, if
we know the ↵, �, and � at these positions!

I Exercise: prove that det(M) = 1
50/147 A. Latina - Transverse beam dynamics - JUAS 2017



Periodic lattices
The transfer matrix for a particle trajectory

M =

0

@

q
�s

�
0

(cosµs + ↵0 sinµs)
p
�s�0 sinµs

(↵
0

�↵s ) cosµs�(1+↵
0

↵s ) sinµsp
�s�0

q
�

0

�s
(cosµs � ↵s sinµs)

1

A

simplifies considerably if we consider one complete turn...

M =

✓

cosµL + ↵s sinµL �s sinµL

��s sinµL cosµL � ↵s sinµL

◆

where µL is the phase advance per period

µL =

ˆ s+L

s

ds
� (s)

Remember: the tune is the phase advance in
units of 2⇡:

Q =
1
2⇡

˛
ds

� (s)
=

µL

2⇡
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Example: Stability of a 1-turn transfer matrix
The transfer matrix for 1 turn is:

M =

✓
cosµL + ↵ sinµL � sinµL

�� sinµL cosµL � ↵ sinµL

◆

The stability condition is: |tr (M) = 2 cosµL|  2.
Calculation for N turns:

M = cosµL

✓
1 0
0 1

◆

| {z }
I

+ sinµL

✓
↵ �
�� �↵

◆

| {z }
J

Given that:

I2 = I

IJ =

✓

1 0

0 1

◆✓

↵ �
�� �↵

◆

=

✓

↵ �
�� �↵

◆

= J

JI =

✓

↵ �
�� �↵

◆✓

1 0

0 1

◆

=

✓

↵ �
�� �↵

◆

= J

J2 =

✓

↵ �
�� �↵

◆✓

↵ �
�� �↵

◆

=

 

↵2 � �� ↵� � �↵

��↵ + ↵� ↵2 � ��

!

=

✓

�1 0

0 �1

◆

= �I

one can compute that:
MN = I cos (NµL) + J sin (NµL)

which indeeds provides stable motion:
���tr

⇣
MN

⌘
= 2 cosNµL

���  2
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The transformation for ↵, �, and �
Consider two positions in the storage ring: s0, s

✓
x

x

0

◆

s

= M

✓
x

x

0

◆

s
0

with
M = M

QF

· M
D

· M
Bend

· M
D

· M
QD

· · · ·

M =

✓

C S
C 0 S0

◆

M�1 =

✓

S0 �S
�C 0 C

◆

Since the Liouville theorem holds, " = const:

" = �x 02 + 2↵xx 0 + �x2

" = �0x
02
0 + 2↵0x0x

0
0 + �0x

2
0
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We express x0 and x

0
0 as a function of x and x

0:
✓

x

x

0

◆

s
0

= M

�1
✓

x

x

0

◆

s

)
x0 = S

0
x � Sx

0

x

0
0 = �C 0

x + Cx

0

Inserting into ✏ we obtain:

" = �x 02 + 2↵xx 0 + �x2

" = �0
�
�C 0

x + Cx

0�2 + 2↵0
�
S

0
x � Sx

0� ��C 0
x + Cx

0�+ �0
�
S

0
x � Sx

0�2

We need to sort by x and x

0:

� (s) = C

2�0 � 2SC↵0 + S

2�0

↵ (s) = �CC 0�0 +
�
SC

0 + S

0
C

�
↵0 � SS

0�0

� (s) = C

02�0 � 2S 0
C

0↵0 + S

02�0
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The transformation for ↵, �, and �

The beam ellipse transformation in matrix notation:

T0!s =

0

@
C

2 �2SC S

2

�CC 0
SC

0 + S

0
C �SS 0

C

02 �2S 0
C

0
S

02

1

A

0

@
�
↵
�

1

A

s

= T0!s

0

@
�
↵
�

1

A

0

This expression is important, and useful:
1. given the twiss parameters ↵, �, � at any point in the lattice we can

transform them and compute their values at any other point in the ring
2. the transfer matrix is given by the focusing properties of the lattice elements,

the elements of M are just those that we used to compute single particle
trajectories
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Beam ellipse transformation (another approach)
Let’s start from the equation of ⌃ seen before, now for x0:

X

T
0 ⌦�1

0 X0 = " with: ⌦0 =

✓
�0 �↵0

�↵0 �0

◆

At a later point if the lattice the coordinates of an individual particle are given using the
transfer matrix M from s0 to s1:

X1 = M · X0

Solving for X0 , i.e. X0 = M

�1 ·X1, and inserting in the first equation above, one obtains:

�
M

�1 · X1
�T

⌦�1
0
�
M

�1 · X1
�
= "

✓
X

T
1 ·
⇣
M

T
⌘�1

◆
⌦�1

0
�
M

�1 · X1
�
= "

X

T
1 ·
⇣
M

T
⌘�1

⌦�1
0 M

�1

| {z }
⌦�1

1

·X1 = "

Which gives:

⌦1 = M · ⌦0 ·MT
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Beam matrix and Twiss parameters
The beam matrix is the covariance matrix of the particle distribution

⌃ =

✓
�11 �12
�21 �22

◆
=

✓ ⌦
x2↵ hxx 0i

hx 0xi
⌦
x 02

↵
◆

this matrix can be also expressed in terms of Twiss parameters ↵, �, � and of the emittance ✏:

⌃ =

✓ ⌦
x2↵ hxx 0i

hx 0xi
⌦
x 02

↵
◆

= ✏

✓
� �↵
�↵ �

◆

Given M =

✓
C S
C 0 S 0

◆

0!s

, we can transport the beam matrix, or the twiss parameters, from

0 to s in two equivalent ways:

I Twiss 3 ⇥ 3 transport matrix:
0

@
�
↵
�

1

A

s

=

0

@
C2 �2SC S2

�CC 0 SC 0 + S 0C �SS 0

C 02 �2S 0C 0 S 02

1

A

0

@
�
↵
�

1

A

0

I Recalling that ⌃s = M ⌃0 MT :
✓

� �↵
�↵ �

◆

s

= M ·
✓

� �↵
�↵ �

◆

0
·MT
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Exercise: Twiss transport matrix, T

Compute the Twiss transport matrix, T ,

T =

0

@
C

2 �2SC S

2

�CC 0
SC

0 + S

0
C �SS 0

C

02 �2S 0
C

0
S

02

1

A

0

@
�
↵
�

1

A

s

= T

0

@
�
↵
�

1

A

0

for:
1. the identity matrix: M = ±I

2. a thin quadrupole with focal length ±f

3. a drift of length L
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Summary

Hill’s equation: x00 (s) + K (s) x (s) = 0, K (s) = K (s + L)

general solution of the

Hill’s equation: x (s) =
p

"� (s) cos (µ (s) + µ
0

)

phase advance & tune: µ
12

=
´ s

2

s
1

ds
�(s) , Q = 1

2⇡

¸
ds

�(s)

beam ellipse: " = � (s) x (s)2 + 2↵ (s) x (s) x0 (s) + � (s) x0 (s)2

beam emittance: ✏ = Area of the ellipse/⇡ =
q

det
�

cov
�

x, x

0��

transfer matrix s
1

! s
2

: M =

0

@

q

�s
�
0

(cosµs + ↵
0

sinµs )
p
�s�0

sinµs

(↵
0

�↵s ) cos µs�(1+↵
0

↵s ) sin µsp
�s�

0

q

�
0

�s
(cosµs � ↵s sinµs )

1

A

stability criterion: |trace (M)|  2
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Summary: The transfer matrix M

I Transformation of particle coordinates:
✓

x
x 0

◆

s

= M2⇥2

✓
x
x 0

◆

0

I using matrix notation in terms of the focusing strength K :

M =

0

@
cos

⇣p
KL

⌘
1p
K

sin
⇣p

KL
⌘

�
p
K sin

⇣p
KL

⌘
cos

⇣p
KL

⌘

1

A =

✓
C S
C 0 S 0

◆

I in Twiss form, and for a periodic lattice (over a period):

M (s) =

0

@

q
�s
�
0

(cosµ+ ↵0 sinµ)
p
�s�0 sinµ

(↵
0

�↵s ) cosµ�(1+↵
0

↵s ) sinµp
�s�0

q
�
0

�s
(cosµ� ↵s sinµ)

1

A

for a period: (1) phase advance: cosµ = 1
2 trace (M); (2) stability condition:

|trace (M)|  2
I Transport of Twiss parameters:

0

@
�
↵
�

1

A

s

=

0

@
C2 �2SC S2

�CC 0 SC 0 + S 0C �SS 0

C 02 �2S 0C 0 S 02

1

A

0

@
�
↵
�

1

A

0
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Part 3.

Lattice design
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Lattice design in particle accelerators
Or..."how to build a storage ring"

High energy accelerators are mostly circular machines
we need to juxtapose a number of dipole magnets,
to bend the design orbit to a closed ring, then add
quadrupole magnets (FODO cells) to focus the beam
transversely

The geometry of the system is determined by the following equality

centrifugal force = Lorentz force

Lorentz force FL = evB

Centrifugal force Fcentr = �mv2

⇢

�mv ⇤2
⇢ = e�vB

P

q

= B⇢

B⇢ is the well known beam ridigity
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Lattice design: the magnetic guide

B⇢ = P/q

Circular orbit: the dipole magnets
define the geometry

✓ =
ds
⇢
⇡ B L

B⇢

field map of a storage ring dipole magnet

The angle spanned in one revolution must be 2⇡, so, for a full circle:

✓ =

´
Bdl
B⇢

= 2⇡ !
ˆ

Bdl ⇡ NLBendB = 2⇡
P

q

this defines the integrated dipole field around the machine.

Note that usually �B
B ⇡ 10�4 is required!
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7000 GeV proton storage ring

ˆ
Bdl ⇡NLBendB = 2⇡p/e

N = 1232 dipole magnets

B ⇡
2⇡ · 7000 · 109

eV

1232 · 15 m · 3 · 108

m
s e

= 8.3 T

LBend = 15 m

q = +e
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Focusing forces for single particles

x

00 + Kx = 0

K = 1/⇢2 + k hor. plane
K = �k vert. plane

dipole magnet 1
⇢ = B

P/q

quadrupole magnet k = g
P/q

9
=

;

Example: the LHC ring
Bending radius: ⇢ = 2.53 km
Quad gradient: g = 220 T/m

k = 9.4 · 10�3 m�2

1/⇢2 = 1.3 · 10�7 m�2

For estimates, in large accelerators, the weak focusing term 1/⇢2 can in general

be neglected
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The FODO lattice

I Most high energy accelerators or storage rings have a periodic sequence of
quadrupole magnets of alternating polarity in the arcs

I A magnet structure consisting of focusing and defocusing quadrupole lenses in
alternating order with “nothing” in between

I Nota bene: “nothing” here means the elements that can be neglected on first sight:
drift, bending magnet, RF structures ... and experiments...
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Periodic solution in a FODO Cell

Output of MAD-X
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The FODO cell
The transfer matrix gives all the information we need.

In thin-lens approximation, we have:

MF =

✓
1 0
� 1

f
1

◆
; MO =

✓
1 L/2
0 1

◆
; MD =

✓
1 0
+ 1

f
1

◆

the transformation matrix of the cell is:

MFODO = MF ·MO ·MD ·MO

(notice that you can also write M = MF/2 ·MO ·MD ·MO ·MF/2, or other cyclic
permutations), which corresponds to

MFODO =

 
1 + L

2f L+ L2

4f
� 2L

f 2
1� L

2f �
L2

4f 2

!
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The FODO cell (cont.)
If we compare the previous matrix with the Twiss representation over one period,

MFODO =

 
1 + L

2f L+ L2

4f
� 2L

f 2
1� L

2f �
L2

4f 2

!

MTwiss =

✓
cosµ+ ↵ sinµ � sinµ
�� sinµ cosµ� ↵ sinµ

◆
= cosµ

✓
1 0
0 1

◆

| {z }
I

+ sinµ
✓

↵ �
�� �↵

◆

| {z }
J

we can derive interesting properties.

I Phase advance

cosµ =
1
2
trace (M) = 1� L

2

8f 2

remembering that cosµ = 1� 2 sin2 µ
2

���sin
µ

2

��� =
L

4f

This equation allows to compute the phase advance per cell from the cell length

and the focal length of the quadrupoles.
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The FODO cell (cont.)
I Example: compute the focal length in order to have a phase advance of 90� per cell

f =
1p
2
L

2

e.g. an emittance measurement station
I Stability requires that |cosµ| < 1, that is

L

4f
< 1 ! stability is for: f > L/4 (or L < 4f )

I Compute the phase advance per cell from the transfer matrix: From
cosµ = 1

2 trace (M)

µ = arccos
✓

1
2
trace (M)

◆

I Compute �-function and ↵ parameter

� =
M12

sinµ

↵ =
M11 � cosµ

sinµ
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The FODO cell: useful formulæ
For a FODO cell like in figure, with two thin quads separated by length L/2

one has:

f =
L

4 sin µ
2

�± =
L

�
1 ± sin µ

2

�

sinµ

↵± =
⌥1� sin µ

2
cos µ

2

D

± =
L✓

�
1 ± 1

2 sin µ
2

�

4 sin2 µ
2

✓ is the total bending angle of the whole cell.
71/147 A. Latina - Transverse beam dynamics - JUAS 2017

�max and �min as a function of µ

I The minimum of �max can be found at µmin = 76.345�. (Remember: µmin is such
that d�(µ

min

)
dµ = 0) ( this applies only for the cases where ✏y � ✏x , or ✏x � ✏y .

I In cases where ✏x ⇡ ✏y one needs to minimise �x + �y (i.e. find the zero of
d(�x+�y)

dµ ), which has solution µmin = 90�.
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The FODO cell (example 1)

Stability condition 4f � L, has a simple interpretation:
I It is well known from optics that an object at a distance a = 2f from a

focusing lens has its image at b = 2f

I The defocusing lenses have no effect if a point-like object is located exactly
on the axis at distance 2f from a focusing lens, because they are traversed on
the axis

I If however the lens system is moved further apart (L > 4f ), this is no more
true and the divergence of the light or particle beam is increased by every
defocusing lens
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The FODO cell (example 2)

I Phase space dynamics in a simple circular
accelerator consisting of one FODO cell
with two 180� bending magnets located in
the drift spaces (the O’s)

I The periodicity of ↵, �, and � is reflected
by the fact that the phase-space ellipse is
transformed into itself after each turn

I An individual particle trajectory, however,
which starts, for instance, somewhere on
the ellipse at the exit of the focusing
quadrupole (small circle), is seen to move
on the ellipse from turn to turn as
determined by the phase angle µ

I Thus, an individual particle trajectory is
not periodic, while the envelope of a whole
beam is
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Exercise: phase-advance of a transfer line

We have seen that the phase advance of a periodic system is given by:

µ = arccos
✓

1
2
trace (M)

◆

Question: given the transfer matrix M of an arbitrary lattice, and knowing the
initial Twiss parameters ↵0 and �0; compute the phase advance µ:

µ =?

Hint: M can be written as:

M (s) =

0

@

q
�s

�
0

(cosµ+ ↵0 sinµ)
p
�s�0 sinµ

(↵
0

�↵s ) cosµ�(1+↵
0

↵s ) sinµp
�s�0

q
�

0

�s
(cosµ� ↵s sinµ)

1

A
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Non-periodic beam optics

I In the previous sections the Twiss parameters ↵, �, �, and µ have been
derived for a periodic, circular accelerator. The condition of periodicity was
essential for the definition of the beta function (Hill’s equation)

I Often, however, a particle beam moves only once along a beam transfer

line, but one is nonetheless interested in quantities like beam envelopes and
beam divergence

I In a circular accelerator ↵, �, and � are completely determined by the
magnet optics and the condition of periodicity (beam properties are not
involved - only the beam emittance is chosen to match the beam size)

I In a transfer line, ↵, �, and � are no longer uniquely determined by the
transfer matrix, but they also depend on initial conditions which have to be
specified in an adequate way
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Non-periodic optics: ILC bunch compressor (EX1)
Optics of a non-periodic system including non-periodic optics. “Matching”
sections connect parts with different periodic conditions.

The matrix

0

@
�
↵
�

1

A

s

= M3⇥3

0

@
�
↵
�

1

A

0

with

M
3⇥3

=

0

B

@

C2 �2SC S2

�CC0 SC0 + S0C �SS0

C02 �2S0C0 S02

1

C

A

allows to compute the magnets
parameters for the matching
sections
Note: even if the � functions are very large,

the beam size keeps small: � =
p

�✏, with

✏y =
✏y,N

�
rel

=
5 ⇥ 10

�9

m

5 GeV/ 0.5 MeV

= 10

�13

m
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Non-periodic optics: final focus of a HEP experiment (EX2)
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