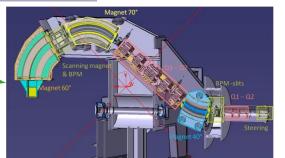


MID 42331

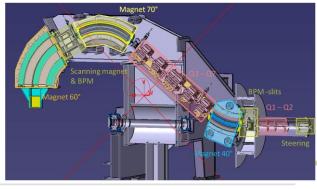
The Superconducting Synchrocyclotron S2C2

The New IBA Single Room Proton Therapy Solution: ProteusONE®


High quality PBS cancer treatment: compact and affordable

Synchrocyclotron with superconducting coil: S2C2

New Compact Gantry for pencil beam scanning



The new compact gantry for pencil beam scanning

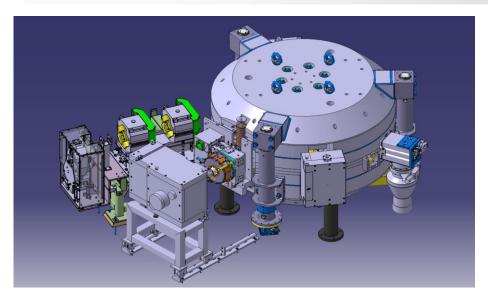
Design aimed at reducing footprint and cost

- Scanning magnets are placed upstream of the last bending magnet
- ESS integrated in the 45 deg inclined part
- Rotation angle 220° => more compact treatment room
- Transport and installation in one part
- The prototype has been fully manufactured and tested and is installed at the customer site in Shreveport where the beam was succesfully transported to the gantry isocenter.
- Patients are treated since September 2014

How a Synchrocyclotron differs from a Cyclotron

Isochronous cyclotron:

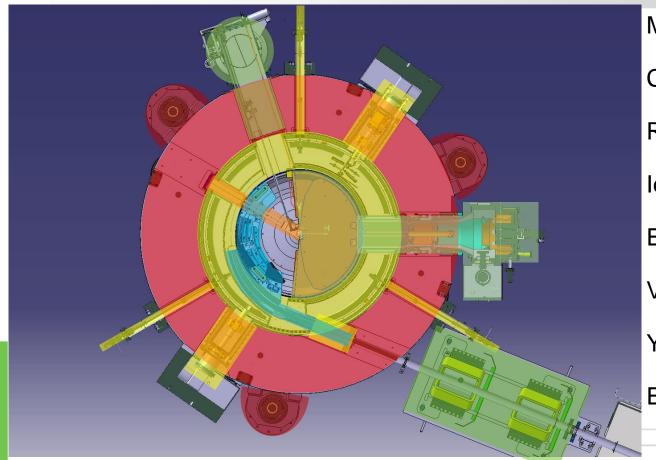
- Requires B to increase proportionally to m.
- Requires sector focusing for vertical stability.
- This leads to a smaller average magnetic field, thus a larger structure.
- All parameters being constant, operation is CW.


Synchro cyclotron:

- Requires B to decrease for weak focusing.
- Requires f to decrease during acceleration.
- Smaller structure due to high average magnetic field.
- Acceleration being frequency dependant, operation is pulsed.

S2C2 overview

General system layout and parameters


- An invited talk on this project was presented at the 2013 cyclotron conference in Vancouver
- Several contributions can be found on the ECPM2012-website

Maximum Enougy	230/250 MeV
Maximum Energy	230/230 MeV
Size	
yoke/pole radius	1.25 m/0.50 m
weight	50 tons
Coil	NbTi - wire in channel
ramp up rate / time	2-3A/min / 4 hours
windings/coil	3145
stored energy	12 MJ
Magnetic field	
central/extraction	5.7 T/5.0 T
Cryo cooling	conductive
	4 cryocoolers 1.5 W
initial cooldown	12 days
recovery after quench	less than 1 day
Beam pulse	
rate/length	$1000~\mathrm{Hz}/7~\mu\mathrm{sec}$
RF system	self-oscillating
frequency	93-63 MHz
voltage	10 kV
Extraction	Passive regenerative
Ion source	PIG cold cathode
Central region	removable module

S2C2 overview

Main subsystems

Magnet return yoke

Cryostat with coil

RF system

Ion source+central region

Extraction system

Vacuum system

Yoke lifting system

Extracted beam line

Superconducting coil

Designed and manufactured by ASG (Genua, Italy)

NbTi wire in channel coil.

Suspended cold mass: 3tons.

Nominal current: 650A (56 A/mm²).

Nominal ampere-turns: 4.3x10+6At.

Conduction cooled by 4 SHI cryocoolers.

Overall weight: 4tons.

9 Inconel tension rods with strain gauges.
(radial ø14mm; upper ø8mm; lower ø6mm)

Cryostat is the cyclotron vacuum chamber.

Superconducting coil

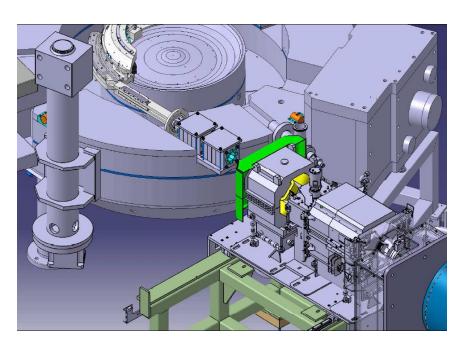
Installation of the cryostat in the yoke



RF-system

A triode-based self-oscillating RF system

RF system on the test bench


- λ/2-structure operating in 1th harmonic mode: terminated by the 180° dee on one side and the rotco on the other side
- Biased at 1 kV DC to supress mulipactor
- Two side stubs provide fine-tuning of df/dt during capture
- RF Frequency: 60~90MHz
- Modulation frequency: 1kHz
- Dee voltage: 3~12kV
- Extensively modeled with CST
- Placed outside yoke in shielded volume

External beam line

layout

- A variable energy degrader is placed at 2 meters from the yoke exit
- A permanent magnet quad matches the beam phase space with respect to the beam line optics
- A quadrupole doublet provides a 1 mm double waist (1-sigma) on the degrader.
- A variable horizontal collimator between the two quads cuts the horizontal divergence providing constant optics independent of gantry angle
- Full assembly can be shifted aside for access to the quads in the shielding wall

