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IntroducAon	
•  Why	study	neutrinos?	
•  Neutrino	oscillaAons	

•  NOvA	experiment	and	physics	goals	
– NuMI	beam	
– NOvA	detectors	

•  Muon	neutrino	disappearance	
•  NC	analysis	
•  Electron	neutrino	appearance	
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Why	study	neutrinos?	
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Neutrinos	

•  Physics	beyond	the	standard	model	
! 20,000	neutrino	papers	since	1998	
! Nobel	Prize	for	neutrino	oscillaAons	in	2015!	

•  New	doors	opened	by	recent	discovery	of	θ13				
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Two	Major	QuesAons	
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Why	is	the	maZer	–	anAmaZer	
asymmetry	of	the	universe	so	large?	

•  Neutrinos					 	 			leptogenesis	

•  Neutrino	oscillaAons	can	test	CP	
•  NOvA	has	some	sensiAvity,	DUNE/Hyper-K	much	more		
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Is	there	a	paZern	to	the	masses?	

? 
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Is	there	a	paZern	to	the	masses?	

? 

Two heavy and 
one light? 
 
NOvA has 
sensitivity to the 
mass hierarchy 
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Theory	Overview	
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normal 
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How	does	the	mass	hierarchy	
come	into	play?	
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Δm2
31 and Δm2

32 differ by 3% 
	

Small	effect	
	

JUNO’s	planned	measurement	involves	this	



MaZer	Effect	&	Mass	Hierarchy	
•  Neutrinos	(and	anAneutrinos)	travel	through	
maZer	not	anAmaZer		
– electron	density	causes	asymmetry	(fake	CPv!)	

•  via	specifically	CC	coherent	forward	elasAc	scaZering	
– different	Feynman	diagrams	for	νe	and	νe	
interacAons	with	electrons	so	different	amplitudes				
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Arrows flip for 
antineutrinos 



Where	have	we	got	to?	
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It’s	hard	to	overstate…	

•  The	past	few	years	saw	a	major	breakthrough	
in	neutrino	physics	
– Our	measurement	of	θ13	has	gone	from	just	an	
upper	limit	to	one	of	the	best	measured	

•  A	new	door	has	been	opened	to	probing	CP	
violaAon,	mass	hierarchy	and	octant	of	θ23	
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Reactor	Experiments	Provided	Breakthrough	on	θ13	
•  Daya	Bay,	RENO	and	Double	Chooz	
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What	we	know	and	don’t	know	

•  r	
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    starting point 

Dirac or Majorana? 

Σi mi    absolute mass scale 

δ     Dirac phase 

α β    Majorana phases 

mass ordering 

[Marrone, Neutrino 2016] 

CP-conservation disfavored at ≥ 2σ 

Normal Ordering slightly preferred 

    missing pieces 

Wide range of δCP 
values possible 

[Ferruccio Feruglio, NOW] 

Preference for non-
maximal θ23 mixing 
 
Lower Octant, NH 
preferred. 
 
Upper Octant, IH a 
viable solution 

Slight preference 
for NH (ΔΧ2=3.2, 
suppressed in plot) 

Three “Unknowns” 

(1) 

(2) 

(3) 
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Long-baseline neutrino oscillations 
𝜈𝜇 disappearance: 

…to leading order 
experimental data are consistent with unity 

(“maximal mixing”) 

Need a leap in precision on 𝜃23  (and 'm2  ) 32 

𝜈e appearance: 

Daya Bay reactor experiment: 
sin2(2𝜃13) = 0.084 ± 0.005 

…plus potentially 
   large CPv and 
   matter effect 
   modifications! 

Non-zero 𝜃13 opens the long-baseline appearance channel, and… 

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 2 
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Long-baseline 𝜈𝜇→𝜈e 
For fixed L/E = 0.4 km/MeV A more quantitative sketch… 

 
At right: 
    P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
plotted for a single neutrino 
energy and baseline 
 

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 4 
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Long-baseline 𝜈𝜇→𝜈e 
For fixed L/E = 0.4 km/MeV A more quantitative sketch… 

 
At right: 
    P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
plotted for a single neutrino 
energy and baseline 
 
Measure these probabilities 
   (an example measurement 
   of each shown)  
 
Also: 
    Both probabilities ∝ sin2𝜃23 
 

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 5 
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Non-maximal	
mixing	scenario	

•  If	θ23	non-maximal	
then	effect	of	octant	
is	important	

•  Big	effect,	+/-	20%	

Evan Niner I Results from NOvA 02/11/16

Relation of Oscillation Parameters in NOvA

25
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Effect	of	Increasing	Energy	

Neutrinos: Theory and Phenomenology 11

For the measured value of sin2 2✓
13

= 0.09, the ellipse separate when sin2 ✓
23

> 0.58.

In the overlap region, the value of sin � for the two hierarchies satisfies the following

relationship

hsin �iNH � hsin �iIH = 2(tan ✓
23

sin 2✓
13

)/(tan ✓
23

sin 2✓
13

)crit

⇡
(

1.7 tan ✓
23

NO⌫A

0.57 tan ✓
23

T2K/HyperK.

It is also worth noting the following, that sum of the neutrino and anti-neutrino

probabilities at oscillation maximum can be directly compared to the value of sin2 2✓
13

measured by the reactor disappearance experiments:

(P (⌫̄µ ! ⌫̄e) + P (⌫µ ! ⌫e))|�31=⇡/2 = 2 sin2 ✓
23

sin2 2✓
13

+ O
 

(aL)

 

�m2

21

�m2

31

!!

, (21)

thus determining the quadrant of ✓
23

. The di↵erence of these probabilities can be used

to determine the CP violation phase � and the mass hierarchy.

The LBNE experiment [14] has a baseline of 1300 km, Fermilab to Homestake, SD

which will test the current massive neutrino paradigm in interesting new ways because

of its broad band ⌫µ neutrino beam. Here the matter e↵ects are larger and the bi-

probability ellipses separate at the same L/E as the NO⌫A experiment, see Fig. 8.
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Figure 8. The biprobability plot for the LBNE experiment at the same L/E as the
NO⌫A experiment [20]. Notice how widely the normal (blue) and the inverted (red)
hierarchies are separated here. sin2 ✓23 = 0.5 was used for this figure.

3.3. Asymmetry

The asymmetry between the neutrino and anti-neutrino appearance probability is

defined as [22]

A ⌘ |P (⌫µ ! ⌫e) � P̄ (⌫̄µ ! ⌫̄e)|
[P (⌫µ ! ⌫e) + P̄ (⌫̄µ ! ⌫̄e)]

, (22)
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where J = sin � sin 2✓
13

cos ✓
13

sin 2✓
12

sin 2✓
23

is the Jarlskog invariant [6]. This allows

for the possibility that CP violation maybe able to be observed in the neutrino sector,

since it allows for P (⌫µ ! ⌫e) 6= P (⌫̄µ ! ⌫̄e) in vacuum.

In matter, the two flavor amplitudes,
p
Patm and

p
Psol, are modified as follows

q

Patm ) sin ✓
23

sin 2✓
13

sin(�
31

� aL)

(�
31

� aL)
�

31

q

Psol ) cos ✓
23

sin 2✓
12

sin(aL)

(aL)
�

21

(18)

where a = ±GFNe/
p
2 ⇡ (⇢Ye/1.3 g cm�3) (4000 km)�1 and the sign is positive for

neutrinos and negative for anti-neutrinos. This change follows since in both the (31)

and (21) sectors the product {�m2 sin 2✓} is approximately independent of matter e↵ects.

Fig. 6 shows the ⌫e appearance probability as a function of the energy for a distance

of 1200 km. In Fig. 7 is the bi-probability plots for both T2K [11] (as well as the

future possible HyperK [13]), and NO⌫A [12] experiments. It is possible that these two

experiments will determine the mass ordering, and give a hint of CP violation in the

neutrino sector with su�cient statistics.

The critical value of tan ✓
23

sin ✓
13

at which the bi-probability ellipses for the normal

hierarchy and the inverted hierarchy separate is given by [19]

(tan ✓
23
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(
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⇡ 2.3
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/(aL) at �
31

= ⇡/2.

For the NO⌫A experiment, this corresponds to

(tan2 ✓
23

sin2 2✓
13

)crit = 0.13 (20)

Figure 7. The left panel is the bi-probability plot for the T2K/HyperK experiment
showing the correlation between neutrino and antineutrino ⌫

µ

! ⌫
e

probabilities. The
matter e↵ect is small but non-negligible for T2K/HyperK. Whereas the left panel is
for the NO⌫A experiment where the matter e↵ect is 3 times larger.

Long-baseline 𝜈𝜇→𝜈e 
For fixed L/E = 0.4 km/MeV A more quantitative sketch… 

 
At right: 
    P(𝜈⎺𝜇→ 𝜈⎺e)  vs. P(𝜈𝜇→𝜈e) 
plotted for a single neutrino 
energy and baseline 
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Increasing Energy 

0.6 GeV 2 GeV 3 GeV 

T2K NOvA DUNE 

[" bigger matter effect and hence bigger fake CP violation]  



T2K	νe	Appearance	
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D ISCUSS ION
• Observe 

• more νe candidates than predicted 

• fewer νe candidates than predicted 

in the case of NH, δCP = -π/2 that induces 
the largest asymmetry

TRUE PARAMETERS
δCP=-π/2, NH δCP=0, NH

90% 0 . 1 8 7 0 . 1 0 2

2 σ 0 . 0 8 9 0 . 0 4 7

EXPECTED  (NH, sin2Θ23=0.528)

OBS . δCP=-π/2 δCP=0 δCP=+π/2 δCP=π

νe 32 2 7 . 0 2 2 . 7 1 8 . 5 2 2 . 7

νe 4 6 . 0 6 . 9 7 . 7 6 . 8

• Toy MC run to assess probability of outcome 
given a set of “true” parameters 

• Below: fraction where δCP =0 excluded at  90% 
or 2 σ CL for NH, δCP = -π/2, 0

observed vs. expected number of νe and νe candidates

23

Favoured 
scenario, -pi/2 
 

Some small tension: 
Neutrinos too high (upper octant?) 
Antineutrinos too low 

Bkg 

5.0 

3.2 

(Signal + Bkg) 
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T2K	Results	on	δCP	(fixed	hierarchy)	

δ C P V S .  θ 1 3

• Left: δCP vs. θ13 (fixed Δχ2
, fixed hierarchy) 

• T2K-only 

• T2K with reactor sin
2
2θ13= 0.085±0.005 

• Below: δCP with Feldman-Cousins critical 
values and reactor θ13

δCP = [-3.02, -0.49] (NH),  [-1.87, -0.98] (IH)  @90% CL

T2K Run1-7b 
PRELIMINARYT2K Run1-7b 

PRELIMINARY

T2K Run1-7b 
PRELIMINARY

CPδ
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L
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25

Normal Hierarchy
Inverted Hierarchy

T2K Run1-7b preliminary
note change in horizontal scale

22
[Tanaka, Neutrino] 
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NOvA	Overview	
•  “ConvenAonal”	beam	
•  Two-detector	experiment:	

•  Near	detector		
–  measure	beam	
composiAon		

–  energy	spectrum	

•  Far	detector		
–  measure	oscillaAons	and	
search	for	new	physics	

Ash River 

Ash River 

810 km 



The	NOvA	CollaboraAon	

234 Collaborators 
41 institutions 

7 countries 
 

Argonne,	AtlanAco,	Banaras	Hindu	University,	Caltech,	Cochin,	InsAtute	of	
Physics	and	Computer	science	of	the	Czech	Academy	of	Sciences,	Charles	
University,	CincinnaA,	Colorado	State,	Czech	Technical	University,	Delhi,	
JINR,	Fermilab,	Goiás,	IIT	GuwahaA,	Harvard,	IIT	Hyderabad,	U.	Hyderabad,	
Indiana,	Iowa	State,	Jammu,	Lebedev,	Michigan	State,	Minnesota-Twin	
CiAes,	Minnesota-Duluth,	INR	Moscow,	Panjab,	South	Carolina,	SD	School	
of	Mines,	SMU,	Stanford,	Sussex,	Tennessee,	Texas-AusAn,	Tuts,	
UCL,Virginia,	Wichita	State,	William	and	Mary,	Winona	State	

27	Jeff	Hartnell,	CERN	Seminar	2016	



Physics	Goals	
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Results from 3 different oscillation analyses 
#  Disappearance	of		
νµ	CC	events	
¤  clear	suppression	as	a	

funcAon	of	energy	
¤  2015	analysis	results	

Phys.Rev.D93.051104	
sin2(2✓23)

���m2
32

��

#  Appearance	of	νe	CC	
events	

¤  2	GeV	neutrinos	
enhances	maZer	
effects		

¤  ±30%	effect	

¤  2015	analysis	results	
in	PRL.116.151806	

✓13, ✓23, �CP ,
and Mass Hierarchy

�m2
41, ✓34, ✓24

#  Deficit	of	NC	events?	
¤  suppression	of	NCs	could	be	evidence	

of	oscillaAons	involving	a	sterile	
neutrino	

¤  Fit	to	3+1model	
¤  new!	
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Off-axis 

On-axis 

NuMI Beam 
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Beam	Performance	
•  6.05x1020	POT	in	14	kton	equivalent	detector	

– More	than	double	exposure	of	2015	analysis	

•  Averaged	560	kW	before	present	shutdown	
•  Achieved	700	kW	design	goal	in	tests	(June13)	
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Detector Commissioning 
(Reduced Mass) 

First Analysis 
2.74x1020 POT-equiv. 

Total Exposure 
6.05x1020 POT-equiv. 
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To APD 

4 cm ⨯ 6 cm 

1560 cm
 

A NO𝜈A cell NO𝜈A detectors 

Fiber pairs 
 from 32 cells 

32-pixel APD 

Far detector: 
   14-kton, fine-grained, 
   low-Z, highly-active 
   tracking calorimeter 
      → 344,000 channels 

Near detector: 
   0.3-kton version of 
   the same 
      → 20,000 channels 

Extruded PVC cells filled with 
11M liters of scintillator 

instrumented with 
𝜆-shifting fiber and APDs 

Ryan Patterson, Caltech Fermilab JETP, August 6, 2015 10 
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ν

νµ CC 

νe CC 

NC 

~5m 

~2.5m 

Long, straight track 

Shorter, wider, fuzzy shower 

Diffuse activity from 
nuclear recoil system 

Event	Types	
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ScaZering	in	a	Nuclear	Environment	

Jeff	Hartnell,	CERN	Seminar	2016	 34	

Reco “q
0
” (=E

had,vis
)

1
0

3
 E

v
e
n

ts

0

10

20

0

10

20

0

10

20

0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.80

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.80 0.2 0.4 0.6 0.80

10

20

0

10

20

0

10

20

1.0

1.0

0.8 < |q|/GeV < 0.9 0.9 < |q|/GeV < 10.7 < |q|/GeV < 0.8

0.4 < |q|/GeV < 0.5
0.5 < |q|/GeV < 0.6

0.6 < |q|/GeV < 0.7

0.2 < |q|/GeV < 0.3 0.3 < |q|/GeV < 0.40.1 < |q|/GeV < 0.2

NOvA ND Data

NOvA Preliminary

•  Near	detector	hadronic	energy	distribuAon	
suggests	unsimulated	process	between	quasi-
elasAc	and	delta	producAon	

Similar conclusions from MINERvA 
data reported in P.A. Rodrigues et al.,  
PRL 116 (2016) 071802 
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NOvA ND Data

NOvA Preliminary

•  50%	systemaAc	uncertainty	
on	MEC	component	

•  Reduces	largest	
systemaAcs		

–  hadronic	energy	scale	
–  QE	cross	secAon	modeling	

•  Reduce	single	non-resonant	
pion	producAon	by	50%	
(P.A.	Rodrigues		et	al,		
arXiv:1601.01888.)		

#  Enable	GENIE	empirical	Meson	Exchange	Current	Model	
#  Reweight	to	match	NOvA	excess	as	a	funcAon	of	3-
momentum	transfer	

MEC model by S. Dytman, inspired by  
J. W. Lightbody, J. S. O’Connell, Computers in Physics 2 (1988) 57.  

ScaZering	in	a	Nuclear	Environment	
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𝜈𝜇 disappearance 

(simulated 𝜈𝜇 CC event) 

• Identify contained 𝜈𝜇 CC events in each detector 
• Measure their energies 
• Extract oscillation information from differences between 

 the Far and Near energy spectra 
 
 



νμ	Event	SelecAon	
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• Goal:	Isolate	a	pure	sample	of	
νµCC	events	less	than	5GeV	
–  Select	events	with	long	tracks	
–  Suppress	NC	and	cosmic	backgrounds	

•  4-variable	kNN	used	to	idenAfy	
muons	
–  track	length	
–  dE/dx	along	track	
–  scaZering	along	track	
–  track-only	plane	fracAon	

• ND	data	matches	simulaAon	
well	for	muon	variables	

K. Matera, ICHEP 2016
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Goal: isolate a pure sample of νμ 
charge-current events < 5 GeV

10

Containment cuts 
Remove events with activity close to detector walls

Four variable kNN used to 
identify muons: 

• Track length  
• dE/dx along track 
• Scattering along track 
• Track-only plane fraction
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νμ	Near	Detector	Data	
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•  AddiAon	of	MEC	events	substanAally	
improves	simulated	hadronic	energy	
distribuAon	
–  hadronic	energy	scale	uncertainty	

reduced	(14%	to	5%)	

•  Reconstructed	neutrino	energy	
unfolded,	true	Far/Near	raAo	used	to	
extrapolate	ND	data	for	a	FD	predicAon	
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•  78	events	observed	in	FD	
–  473±30	with	no	oscilla5on		
–  82	at	best	oscillaAon	fit	
–  3.7	beam	BG	+	2.9	cosmic		
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•  Fit	for	Δm2	and	sin2θ23	
•  Dominant	systemaAc	effects	included	

in	fit:	
–  NormalizaAon	
–  NC	background	
–  Flux	
–  Muon	and	hadronic	energy	scales	
–  Cross	secAon	
–  Detector	response	and	noise		

Best Fit (in NH): Maximal mixing  
excluded at 2.5σ 
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Maximal mixing  
excluded at 2.5σ 

Driven by bins in oscillation dip (1-2 GeV). 
Forcing maximal mixing gives:  

K. Matera, ICHEP 2016

The non-maximal fit is driven by 
bins in the oscillation dip (1-2 GeV)

21

Forcing maximal mixing 
gives us:

with χ2 at 6.4 above the 
non-maximal fit

(Compare to  

for non-maximal mixing)
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•  This	analysis	features	a	new	event	selecAon	technique	
based	on	ideas	from	computer	vision	and	deep	learning	

#  Calibrated	hit	maps	are	
inputs	to	ConvoluAonal	
Visual	Network	(CVN)	

#  Series	of	image	processing	
transformaAons	applied	to	
extract	abstract	features	

#  Extracted	features	used	as	
inputs	to	a	convenAonal	
neural	network	to	classify	
the	event	
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•  This	analysis	features	a	new	event	selecAon	technique	
based	on	ideas	from	computer	vision	and	deep	learning	
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inputs	to	ConvoluAonal	
Visual	Network	(CVN)	
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Improvement in sensitivity from CVN 
equivalent to 30% more exposure 

•  This	analysis	features	a	new	event	selecAon	technique	
based	on	ideas	from	computer	vision	and	deep	learning	

#  Calibrated	hit	maps	are	
inputs	to	ConvoluAonal	
Visual	Network	(CVN)	

#  Series	of	image	processing	
transformaAons	applied	to	
extract	abstract	features	

#  Extracted	features	used	as	
inputs	to	a	convenAonal	
neural	network	to	classify	
the	event	

[A. Aurisano et al., arXiv:1604.01444]  
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NOvA Preliminary
•  Events	classified	using	CVN	
•  NormalizaAon	agrees	well	
•  Data	shited	to	lower	energy	

relaAve	to	MC	
–  No	MEC	model	for	NC	events		
–  Large	uncertainAes	on	NC	cross	

secAon	

Extrapolation of ND data using F/N in 
reconstructed energy gives a prediction 
of: 
 Total	 NC	 νµ	CC		 Beam	νe Cosmics	

83.7±8.3	 60.6	 4.8	 3.6	 14.3	

ND Data 
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•  Observe	95	events	
•  No	evidence	of	
oscillaAons	involving	
steriles	

Excellent NC efficiency (50%) and purity (72%) promise strong future limits on θ34 

For 0.05 eV

2 < �m2
41 < 0.5 eV

2
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�
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𝜈e appearance 

(simulated 𝜈e CC event) 

• Identify contained 𝜈e CC candidates in each detector 
• Use Near Det. candidates to predict beam backgrounds 

 in the Far Detector 
• Interpret any Far Det. excess over predicted backgrounds 

 as 𝜈e appearance 
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•  SelecAon	reopAmized	to	favor	parameter	measurement	
–  both	cosmic	rejecAon	and	classifier	cut	
–  increased	signal	efficiency,	including	lower	purity	bins	

•  Use	ND	data	to	predict	background	in	FD	
–  NC,	CC,	beam	νe	each	propagate	differently	
–  constrain	beam	νe	using	selected	νµ CC	spectrum	
–  constrain	νµ CC	using	Michel	Electron	distribuAon 
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beam νe up by 4% 
NC up by 10% 
νµ CC up by 17% 

Most 
signal 

like 
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Total	BG	 NC	 Beam	νe νµ	CC		 ντ CC	 Cosmics	

8.2	 3.7	 3.1	 0.7	 0.1	 0.5	

NH,	3π/2,		 IH,	π/2,		

28.2	 11.2	

Signal events 
(±5% systematic uncertainty): 
 

Background by component  
(±10% systematic uncertainty): 

#  Extrapolate	each	component	in	
bins	of	energy	and	CVN	output	

#  Expected	event	counts	depend	
on	oscillaAon	parameters		
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–  background	8.2±0.8	

>8σ electron neutrino appearance signal 

Alternate selectors from 2015 analysis show consistent results 
LID: 34 events, 12.2±1.2 BG expected 
LEM: 33 events, 10.3±1.0 BG expected 

CVN=0.991 
E=1.63 GeV 
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•  Fit	for	hierarchy, 𝜹CP,	sin2θ23	
–  Constrain	sin2(2θ13)=0.085±0.05	
–  Constrain	Δm2=2.44±0.06x10-3	eV2	

(-2.49±0.06x10-3	eV2,	IH)	

–  SystemaAc	effects	included	as	
nuisance	parameters	(normalizaAon,	
flux,	calibraAon,	cross	secAon,	and	
detector	response	effects)	
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Contours	
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•  Fit	for	hierarchy, 𝜹CP,	sin2θ23	
–  Constrain	Δm2	and	sin2θ23	with	NOvA	

disappearance	results	
–  Not	a	full	joint	fit,	systemaAcs	and	other	

oscillaAon	parameters	not	correlated		

•  Global	best	fit	Normal	Hierarchy	
	
	
–  best	fit	IH-NH,		Δ𝜒2=0.47	
–  both	octants	&	hierarchies	allowed	at	1σ 
–  3σ exclusion	in	IH,	lower	octant	around	
𝜹CP=π/2		 

	Antineutrino data will help resolve degeneracies, 
particularly for non-maximal mixing 

Planned for Spring 2017 
CPδ

23θ2
si

n

0.2

0.3

0.4

0.5

0.6

0.7

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 IH

CPδ

23θ2
sin

0.2

0.3

0.4

0.5

0.6

0.7

0
2
π π

2
π3 π2

NOvA Preliminary

σ1 σ2 
σ3 NHNo FC Correction �CP = 1.49⇡

sin2(✓23) = 0.40



Conclusions	
With	6.05x1020	POT,	NOvA	finds:	
•  Muon	neutrinos	disappear	

–  Best	fit	is	non-maximal	
– Maximal	mixing	excluded	at	2.5σ	

•  Neutral	current	event	rate	shows	no	evidence	of	
steriles	
– With	more	data,	expect	strong	limits	on	θ34	

•  Electron	neutrinos	appear	
–  Data	prefers	NH	at	low	significance	
–  IH,	lower	octant,	𝜹CP=π/2	region	excluded	at	3σ	

•  Looking	forward	to	more	neutrinos	
•  AnAneutrino	running	planned,	spring	2017	
•  Stay	tuned!		
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NH 3⇡/2 lower octant; systematics
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Figure: Projected sensitivities to rejection of: maximal mixing (violet), wrong hierarchy
(green), wrong octant (yellow), and CP conservation (red), assuming true oscillation parameters
NH, 3⇡/2 and sin2 ✓23 = 0.403. Joint fit combines the electron neutrino appearance and muon
neutrino disappearance channels, and global reactor constraint sin2 2✓13 = 0.085± 0.005. The
analyses use the CVN ⌫e and RemID ⌫µ particle selectors, and expected improvements to
systematic uncertainties (2% signal and 5% background for ⌫e ; 2% muon energy, 3% hadronic
energy and 0% NC background for ⌫µ). Assuming 6⇥ 1020 POT delivered each year. The
accumulated exposure is divided between FHC and RHC mode as: i) 6⇥ 1020 FHC by 2016, ii)
9⇥ 1020 FHC + 3⇥ 1020 RHC by 2017, ii) 9⇥ 1020 FHC + 9⇥ 1020 RHC by 2018, iv) 50%
FHC + 50% RHC after that.2

NH 3⇡/2 upper octant; systematics
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Figure: Projected sensitivities to rejection of: maximal mixing (violet), wrong hierarchy
(green), wrong octant (yellow), and CP conservation (red), assuming true oscillation parameters
NH, 3⇡/2 and sin2 ✓23 = 0.625. Joint fit combines the electron neutrino appearance and muon
neutrino disappearance channels, and global reactor constraint sin2 2✓13 = 0.085± 0.005. The
analyses use the CVN ⌫e and RemID ⌫µ particle selectors, and expected improvements to
systematic uncertainties (2% signal and 5% background for ⌫e ; 2% muon energy, 3% hadronic
energy and 0% NC background for ⌫µ). Assuming 6⇥ 1020 POT delivered each year. The
accumulated exposure is divided between FHC and RHC mode as: i) 6⇥ 1020 FHC by 2016, ii)
9⇥ 1020 FHC + 3⇥ 1020 RHC by 2017, ii) 9⇥ 1020 FHC + 9⇥ 1020 RHC by 2018, iv) 50%
FHC + 50% RHC after that.3
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StarAng	with	νe	

JUNO 
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νμ	"	νe	appearance	probability			
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[PDG, 2014] 



MaZer	Effect	&	Mass	Hierarchy	
•  Coherent	forward	elasAc	scaZering	
•  Neutrinos	(and	anAneutrinos)	travel	through	
maZer	not	anAmaZer		
– electron	density	causes	the	asymmetry	

•  via	specifically	CC	coherent	forward	elasAc	scaZering	
– different	Feynman	diagrams	for	νe	and	νe	
interacAons	with	electrons...				
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Different	Feynman	
Diagrams	

•  Amplitude	for	electron	
neutrino	interacAon	
with	an	electron		

•  						is	not	equal	to...	

•  Amplitude	for	electron	
an5neutrino	interacAon	
with	an	electron	
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4

readily described (Weinberg, 1967). These interactions
all fall within the context of the general gauge theory of
SU(2)

L

⇥U(1)
Y

. This readily divides the types of possi-
ble interactions for neutrinos into three broad categories.
The first is mediated by the exchange of a charged W
boson, otherwise known as a charged current (CC) ex-
change. The leptonic charged weak current, jµ

W

, is given
by the form:

jµ

W

= 2
X

↵=e,µ,⌧

⌫̄
L,↵

�µl
↵L

. (5)

The second type of interaction, known as the neutral
current (NC) exchange, is similar in character to the
charged current case. The leptonic neutral current term,
jµ

Z

, describes the exchange of the neutral boson, Z0:

jµ

Z

= 2
X

↵=e,µ,⌧

g⌫

L

⌫̄
↵L

�µ⌫
↵L

+ gf

L

l̄
↵L

�µl
↵L

+ gf

R

l̄
↵R

�µl
↵R

(6)
Here, ⌫

↵L(R)

and l
↵L(R)

correspond to the left (right)

neutral and charged leptonic fields, while g⌫

L

, gf

L

and

gf

R

represent the fermion left and right- handed cou-
plings (for a list of these values, see Table I). Though
the charged leptonic fields are of a definite mass eigen-
state, this is not necessarily so for the neutrino fields,
giving rise to the well-known phenomena of neutrino os-
cillations.

Historically, the neutrino-lepton charged current and
neutral current interactions have been used to study the
nature of the weak force in great detail. Let us return to
the case of calculating the charged and neutral current
reactions. These previously defined components enter
directly into the Lagrangian via their coupling to the
heavy gauge bosons, W± and Z0:

LCC = � g

2
p

2
(jµ

W

W
µ

+ jµ,†
W

W †
µ

) (7)

LNC = � g

2 cos ✓
W

jµ

Z

Z
µ

(8)

Here, W
µ

and Z
µ

represent the heavy gauge boson
field, g is the coupling constant while ✓

W

is the weak
mixing angle. It is possible to represent these exchanges
with the use of Feynman diagrams, as is shown in Fig-
ure 3. Using this formalism, it is possible to articulate all
neutrino interactions (’t Hooft, 1971) within this simple
framework.

Let us begin by looking at one of the simplest mani-
festations of the above formalism, where the reaction is
a pure charged current interaction:

⌫
l

+ e� ! l� + ⌫
e

(l = µ or ⌧) (9)

+

FIG. 3 Feynman tree-level diagram for charged and neutral
current components of ⌫

e

+ e� ! ⌫
e

+ e� scattering.

The corresponding tree-level amplitude can be calcu-
lated from the above expressions. In the case of ⌫

l

+ e
(sometimes known as inverse muon or inverse tau decays)
on finds:

M
CC

= �G
Fp
2

{[l̄�µ(1 � �5)⌫
l

][⌫̄
e

�
µ

(1 � �5)e]} (10)

Here, and in all future cases unless specified, we as-
sume that the 4-momentum of the intermediate boson is
much smaller than its mass (i.e. |q2| ⌧ M2

W,Z

) such that
propagator e↵ects can be ignored. In this approximation,
the coupling strength is then dictated primarily by the
Fermi constant, G

F

:

G
F

=
g2

4
p

2M2

W

= 1.1663788(7) ⇥ 10�5 GeV�2. (11)

By summing over all polarization and spin states, and
integrating over all unobserved momenta, one attains the
di↵erential cross-section with respect to the fractional en-
ergy imparted to the outgoing lepton:

d�(⌫
l

e ! ⌫
e

l)

dy
=

2m
e

G2

F

E
⌫

⇡

✓
1 � (m2

l

� m2

e

)

2m
e

E
⌫

◆
, (12)

where E
⌫

is the energy of the incident neutrino and m
e

and m
l

are the masses of the electron and outgoing lep-
ton, respectively. The dimensionless inelasticity parame-
ter, y, reflects the kinetic energy of the outgoing lepton,

which in this particular example is y =
El � (m2

l +m2
e)

2me
E⌫

.
The limits of y are such that:

0  y  y
max

= 1 � m2

l

2m
e

E
⌫

+ m2

e

(13)

Note that in this derivation, we have neglected the con-
tribution from neutrino masses, which in this context is



Electron	neutrinos	and	
anAneutrinos	are	affected	

differently	by	interacAons	with	
maZer	"	fake	CP	violaAon	

	
Why	does	the	mass	hierarchy	
affect	oscillaAons	involving	
electron	(anA)neutrinos?	
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MaZer	effect	(neutrino	case)	
•  MaZer	effect	raises	(or	lowers)	the	energy	state	of	
the	mass	eigenstates		
–  strength	depends	on	electron	neutrino	content	of	each	
mass	eigenstate	
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AnAneutrino	case	
•  MaZer	effect	raises	(or	lowers)	the	energy	state	of	
the	mass	eigenstates		
–  strength	depends	on	electron	neutrino	content	of	each	
mass	eigenstate	
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Spli}ngs	and	mixing	angles	affected	

•  Mixing	angles	in	maZer	(θM)	are	modified	by	
the	mass	squared	spli}ng	in	maZer	(Δm2

M)	
– e.g.	simple	2-flavour	case:	

–  Also	see	it	in	full	3-flavour	equaAons	(a	few	slides	back)	
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K. Matera, ICHEP 2016

We consider multiple possible 
sources of systematic error

17

  In each case: 
• The effect is propagated 

through the extrapolation  

• We include those effects 
as pull terms in the fit 

• The increase (in 
quadrature) of the 
parameter measurement 
error is recorded

Systematic* Effect*on*
sin2(θ23)

Effect on 
Δm232

Normalisation ± 1.0% ± 0.21%

Muon1E1scale ± 2.2% ± 0.81%

Calibration ± 2.01% ± 0.21%

Relative1E1scale ± 2.01% ± 0.91%

Cross1 sections1+1FSI ± 0.61% ± 0.51%

Osc.1parameters ± 0.71% ± 1.51%

Beam1backgrounds ± 0.91% ± 0.51%

Scintillation1model ± 0.71% ± 0.11%

All* systematics ± 3.4*% ± 2.4*%

Stat.*Uncertainty ± 4.1*% ± 3.5*%
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K. Matera, ICHEP 2016
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K. Matera, ICHEP 2016
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Our best fit excludes maximal 
mixing at 2.5σ
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Fit Checks
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distributions well
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Inverted hierarchy 
contours
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(1) Estimate the underlying true energy distribution of selected ND events
(2) Multiply by expected Far/Near event ratio and !"→!" oscillation probability  

    as a function of true energy
(3) Convert FD true energy distribution into predicted FD reco energy distribution
Systematic uncertainties assessed by varying all MC-based steps
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NOvA	Far	Detector	

Total mass of 14 ktons  

An admirer 

 TASD: Totally Active Scintillator Design 
 
Longitudinal sampling is ~0.15 X0, which gives: 
-- excellent µ-e separation 
-- π0 rejection capability 

Full-size Modules 
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Very cool time lapse video: http://www.youtube.com/watch?v=gFpK00WJl90&sns=tw 


