

NOvA Oscillation Results

European Research Council

Established by the European Commission

Jeff Hartnell

University of Sussex

CERN EP Seminar 15th November 2016

Introduction

- Why study neutrinos?
- Neutrino oscillations

- NOvA experiment and physics goals
 - NuMI beam
 - NOvA detectors

- Muon neutrino disappearance
- NC analysis
- Electron neutrino appearance

US University of Sussex

Why study neutrinos?

Neutrinos

Physics beyond the standard model
 ▶ 20,000 neutrino papers since 1998
 ▶ Nobel Prize for neutrino oscillations in 2015!

• New doors opened by recent discovery of θ_{13}

Two Major Questions

Why is the matter – antimatter asymmetry of the universe so large?

Neutrinos
 leptogenesis

- Neutrino oscillations can test CP
 - NOvA has some sensitivity, DUNE/Hyper-K much more

$$\begin{aligned} & \left(\begin{matrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{matrix} \right) = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{matrix} \right) \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \\ & \left(\begin{matrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{matrix} \right) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ & Subdominant term \end{aligned}$$

$$\begin{aligned} & \Delta m^{2}_{31} = m_{3}^{2} - m_{1}^{2}, \ L/E \approx 500 \ \text{km/GeV} \\ \Delta m^{2}_{32} = m_{3}^{2} - m_{2}^{2}, \ L/E \approx 500 \ \text{km/GeV} \\ & \Delta m^{2}_{32} = m_{2}^{2} - m_{1}^{2}, \ L/E \approx 500 \ \text{km/GeV} \\ & \Delta m^{2}_{32} = m_{2}^{2} - m_{1}^{2}, \ L/E \approx 15000 \ \text{km/GeV} \end{aligned}$$

How does the mass hierarchy come into play?

$\Delta m^2_{\,31}$ and $\Delta m^2_{\,32}\,differ$ by 3%

Small effect

JUNO's planned measurement involves this

Jeff Hartnell, CERN Seminar 2016

Matter Effect & Mass Hierarchy

- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes asymmetry (fake CPv!)
 - via specifically CC coherent forward elastic scattering
 - different Feynman diagrams for $v_{\rm e}$ and $\overline{v_{\rm e}}$ interactions with electrons so different amplitudes

Where have we got to?

It's hard to overstate ...

- The past few years saw a major breakthrough in neutrino physics
 - Our measurement of $\theta^{}_{13}$ has gone from just an upper limit to one of the best measured
- A new door has been opened to probing CP violation, mass hierarchy and octant of θ_{23}

Reactor Experiments Provided Breakthrough on θ_{13}

• Daya Bay, RENO and Double Chooz

What we know and don't know

Starting with v_{μ}

→ Need a leap in precision on θ_{23} (and Δm_{32}^2)

 ν_e appearance:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}(\Delta m_{32}^{2}L/4E)$$

Daya Bay reactor experiment:
$$\sin^{2}(2\theta_{13}) = 0.084 \pm 0.005$$
 ...plus potentially
large CPv and
matter effect
modifications!

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$ plotted for a single neutrino energy and baseline

Long-baseline $\nu_{\mu} \rightarrow \nu_{e}$

A more quantitative sketch...

At right:

 $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

plotted for a single neutrino energy and baseline

Measure these probabilities

(an example measurement of each shown)

Also: Both probabilities $\propto \sin^2 \theta_{23}$

Non-maximal mixing scenario

- If θ₂₃ non-maximal then effect of octant is important
- Big effect, +/- 20%

Effect of Increasing Energy

University

of Sussex

NOvA

DUNE

Increasing Energy

[→ bigger matter effect and hence bigger fake CP violation]

Jeff Hartnell, CERN Seminar 2016

T2K v_e Appearance

		EXPECTED (NH, $sin^2\Theta_{23}=0.528$) (Signal + Bkg)				
	OBS.	$\delta_{CP} = -\pi/2$	$\delta_{CP}=0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$	Bkg
\mathcal{V}_{e}	32	27.0	22.7	18.5	22.7	5.0
\overline{v}_e	4	6.0	6.9	7.7	6.8	3.2
		Favoured scenario, -pi	/2 Some Neutr Antine	e small tension: inos too high (ι eutrinos too lov	upper octant?) v	
UNIVERSITY of Sussex		Jeff Hartnell, CERN Seminar 2016 [Tanaka, Neutrino]			23	

T2K Results on δ_{CP} (fixed hierarchy)

24

NOvA Overview

- "Conventional" beam
- Two-detector experiment:
- Near detector
 - measure beam composition
 - energy spectrum
- Far detector
 - measure oscillations and search for new physics

The NOvA Collaboration

Argonne, Atlantico, Banaras Hindu University, Caltech, Cochin, Institute of Physics and Computer science of the Czech Academy of Sciences, Charles University, Cincinnati, Colorado State, Czech Technical University, Delhi, JINR, Fermilab, Goiás, IIT Guwahati, Harvard, IIT Hyderabad, U. Hyderabad, Indiana, Iowa State, Jammu, Lebedev, Michigan State, Minnesota-Twin Cities, Minnesota-Duluth, INR Moscow, Panjab, South Carolina, SD School of Mines, SMU, Stanford, Sussex, Tennessee, Texas-Austin, Tufts, UCL,Virginia, Wichita State, William and Mary, Winona State

234 Collaborators41 institutions7 countries

Physics Goals

Results from 3 different oscillation analyses

- Disappearance of
 - v_{μ} CC events
 - clear suppression as a function of energy
 - 2015 analysis results Phys.Rev.D93.051104

```
|\Delta m_{32}^2| \sin^2(2\theta_{23})
```


- Deficit of NC events?
 - suppression of NCs could be evidence of oscillations involving a sterile neutrino
 - Fit to 3+1model

$$\hfill new! \qquad \Delta m_{41}^2, \theta_{34}, \theta_{24}$$

Appearance of $v_e CC$ events

 $\theta_{13}, \theta_{23}, \delta_{CP},$ and Mass Hierarchy

- 2 GeV neutrinos enhances matter effects
- ±30% effect
- 2015 analysis results in PRL.116.151806

UNIVERSITY OF Sussex

Medium Energy Tune

Beam Performance

- 6.05x10²⁰ POT in 14 kton equivalent detector
 More than double exposure of 2015 analysis
- Averaged 560 kW before present shutdown
- Achieved 700 kW design goal in tests (June13)

NOvA detectors

A NOvA cell

To APD

Extruded PVC cells filled with 11M liters of scintillator instrumented with λ-shifting fiber and APDs

Far Detector 14 kton 896 layers

Far detector:14-kton, fine-grained,low-Z, highly-activetracking calorimeter \rightarrow 344,000 channels

Near detector: 0.3-kton version of the same → 20,000 channels

15.6 m

32-pixel APD

Fiber pairs from 32 cells

	-	
		00 00
100		00 00
-01	** **	40.00
		00.00
1		00 00
		40 60
	State of the second state of the	

Near Detector

UNIVERSITY OF Sussex 4 cm × 6 cm

Event Types

Scattering in a Nuclear Environment

 Near detector hadronic energy distribution suggests unsimulated process between quasielastic and delta production **NOvA** Preliminary

Jeff Hartnell, CERN Seminar 2016

Scattering in a Nuclear Environment

- Enable GENIE empirical Meson Exchange Current Model
- Reweight to match NOvA excess as a function of 3momentum transfer
- 50% systematic uncertainty on MEC component
- Reduces largest systematics
 - hadronic energy scale
 - QE cross section modeling
- Reduce single non-resonant pion production by 50% (P.A. Rodrigues et al, arXiv:1601.01888.)

MEC model by S. Dytman, inspired by

ν_{μ} disappearance

- Identify contained ν_{μ} CC events in each detector
- Measure their energies
- Extract oscillation information from differences between the Far and Near energy spectra

v_{μ} Event Selection

- Goal: Isolate a pure sample of ν_μCC events less than 5GeV
 - Select events with long tracks
 - Suppress NC and cosmic backgrounds

4-variable kNN used to identify muons

- track length
- dE/dx along track
- scattering along track
- track-only plane fraction
- ND data matches simulation well for muon variables

Jeff Hartnell, CERN Seminar 2016

v_{μ} Near Detector Data

10³ Events

100

- Addition of MEC events substantially improves simulated hadronic energy distribution
 - hadronic energy scale uncertainty reduced (14% to 5%)
- Reconstructed neutrino energy unfolded, true Far/Near ratio used to extrapolate ND data for a FD prediction

Simulated selected events

Shape-only 1- σ syst. range ND area norm. 3.72 × 10²⁰ POT

38

Simulated background

Data

v_{μ} Far Detector Data

78 events observed in FD

- 473±30 with no oscillation
- 82 at best oscillation fit
- 3.7 beam BG + 2.9 cosmic

Contours

• Fit for Δm^2 and $sin^2 \theta_{23}$

- Dominant systematic effects included in fit:
 - Normalization
 - NC background
 - Flux
 - Muon and hadronic energy scales
 - Cross section
 - Detector response and noise

Best Fit (in NH):

$$\begin{split} \left| \Delta m^2_{32} \right| &= 2.67 \pm 0.12 \times 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} &= 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03}) \end{split}$$

Maximal mixing excluded at 2.5σ

Contours Compared

 $\left|\Delta m_{32}^2\right| = 2.67 \pm 0.12 \times 10^{-3} \mathrm{eV}^2$ $\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$

Maximal mixing excluded at 2.5σ

Driven by bins in oscillation dip (1-2 GeV). Forcing maximal mixing gives:

 $\Delta m_{32}^2 = (2.46) \times 10^{-3} \mathrm{eV}^2$

Best Fit (in NH):

Goodness of fit

There is no significant pull in the oscillation fit from bins in the tail

Neutral Current & v_e Results

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improved Event Selection

- This analysis features a new event selection technique based on ideas from computer vision and deep learning
- Calibrated hit maps are inputs to Convolutional Visual Network (CVN)
- Series of image processing transformations applied to extract abstract features
- Extracted features used as inputs to a conventional neural network to classify the event

Improvement in sensitivity from CVN equivalent to 30% more exposure

Jeff Hartnell, CERN Seminar 2016

Neutral Current Result

NC Near Detector Data

- Events classified using CVN
- Normalization agrees well
- Data shifted to lower energy relative to MC
 - No MEC model for NC events
 - Large uncertainties on NC cross section

Extrapolation of ND data using F/N in reconstructed energy gives a prediction

Total	NC	v_{μ} CC	Beam v _e	Cosmics
83.7±8.3	60.6	4.8	3.6	14.3

NC Far Detector Data

NOvA Preliminary

- Observe 95 events
- No evidence of oscillations involving steriles

For 0.05 eV² <
$$\Delta m_{41}^2$$
 < 0.5 eV²
 $\theta_{34} < 35^\circ, \ \theta_{24} < 21^\circ \ (90\% C.L.)$

Excellent NC efficiency (50%) and purity (72%) promise strong future limits on θ_{34}

ν_e appearance

- Identify contained ν_e CC candidates in each detector
- Use Near Det. candidates to **predict beam backgrounds** in the Far Detector
- Interpret any **Far Det. excess** over predicted backgrounds as v_e appearance

v_e Near Detector Data

- Selection reoptimized to favor parameter measurement
 - both cosmic rejection and classifier cut
 - increased signal efficiency, including lower purity bins
- Use ND data to predict background in FD
 - NC, CC, beam ν_e each propagate differently
 - constrain beam ν_e using selected ν_μ CC spectrum
 - constrain ν_{μ} CC using Michel Electron distribution

Prediction

- Extrapolate each component in bins of energy and CVN output
- Expected event counts depend on oscillation parameters

Signal events (±5% systematic uncertainty):

NH, 3π/2,	IH, π/2,
28.2	11.2

Background by component (±10% systematic uncertainty):

Total BG	NC	Beam v _e	v_{μ} CC	v_{τ} CC	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5

v_e Far Detector Data

>8σ electron neutrino appearance signal

Observe 33 events in FD
 background 8.2±0.8

Alternate selectors from 2015 analysis show consistent results LID: 34 events, 12.2±1.2 BG expected LEM: 33 events, 10.3±1.0 BG expected

Contours

NOvA Preliminary 0.8 $\sin^2 \theta_{23}^{-9.0}$ 0.2 2 σ 1σ No FC Correction 3σ 0.8 $\sin^2 \theta_{23}^{-9.023}$ 0.2 2 σ 1σ 3σ IH $\frac{\pi}{2}$ <u>3π</u> 2 π 2π $\boldsymbol{\delta}_{\mathsf{CP}}$

- Fit for hierarchy, $\delta_{\rm CP}$, sin² θ_{23}
 - Constrain $\sin^2(2\theta_{13})=0.085\pm0.05$
 - Constrain ∆m²=2.44±0.06x10⁻³ eV²
 (-2.49±0.06x10⁻³ eV², IH)
 - Systematic effects included as nuisance parameters (normalization, flux, calibration, cross section, and detector response effects)

Contours

NOvA Preliminary

- Fit for hierarchy, δ_{CP} , $\sin^2\theta_{23}$ - Constrain Δm^2 and $\sin^2\theta_{23}$ with NOvA disappearance results
 - Not a full joint fit, systematics and other oscillation parameters not correlated
- Global best fit Normal Hierarchy
 - $\delta_{CP} = 1.49\pi$ $\sin^2(\theta_{23}) = 0.40$
 - best fit IH-NH, $\Delta \chi^2$ =0.47
 - both octants & hierarchies allowed at 1σ
 - 3σ exclusion in IH, lower octant around $\boldsymbol{\delta}_{\rm CP} = \pi/2$

Antineutrino data will help resolve degeneracies, particularly for non-maximal mixing **Planned for Spring 2017**

Conclusions

With 6.05x10²⁰ POT, NOvA finds:

- Muon neutrinos disappear
 - Best fit is non-maximal
 - Maximal mixing excluded at 2.5σ
- Neutral current event rate shows no evidence of steriles
 - With more data, expect strong limits on θ_{34}
- Electron neutrinos appear
 - Data prefers NH at low significance
 - IH, lower octant, $\delta_{\rm CP}$ = $\pi/2$ region excluded at 3σ
- Looking forward to more neutrinos
- Antineutrino running planned, spring 2017
- Stay tuned!

Backup slides

Starting with v_e

$v_{\mu} \rightarrow v_{e}$ appearance probability

 $P_m^{3\nu \ man}(\nu_\mu \to \nu_e) \cong P_0 + P_{\sin\delta} + P_{\cos\delta} + P_3.$

Here

$$P_0 = \sin^2 \theta_{23} \, \frac{\sin^2 2\theta_{13}}{(A-1)^2} \, \sin^2[(A-1)\Delta]$$
$$P_3 = \alpha^2 \, \cos^2 \theta_{23} \, \frac{\sin^2 2\theta_{12}}{A^2} \, \sin^2(A\Delta) \,,$$

[PDG, 2014]

$$P_{\sin\delta} = -\alpha \frac{8 J_{CP}}{A(1-A)} (\sin\Delta) (\sin A\Delta) (\sin[(1-A)\Delta]) ,$$
$$P_{\cos\delta} = \alpha \frac{8 J_{CP} \cot\delta}{A(1-A)} (\cos\Delta) (\sin A\Delta) (\sin[(1-A)\Delta]) ,$$

where

$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}, \ \ \Delta = \frac{\Delta m_{31}^2 L}{4E}, \ \ A = \sqrt{2} G_{\rm F} N_e^{man} \frac{2E}{\Delta m_{31}^2},$$

and $\cot \delta = J_{CP}^{-1} \operatorname{Re}(U_{\mu 3} U_{e3}^* U_{e2} U_{\mu 2}^*), \ J_{CP} = \operatorname{Im}(U_{\mu 3} U_{e3}^* U_{e2} U_{\mu 2}^*).$

University of Sussex

Matter Effect & Mass Hierarchy

- Coherent forward elastic scattering
- Neutrinos (and antineutrinos) travel through matter not antimatter
 - electron density causes the asymmetry
 - via specifically **CC** coherent forward elastic scattering
 - different Feynman diagrams for v_e and \overline{v}_e interactions with electrons...

Different Feynman Diagrams

- Amplitude for electron neutrino interaction with an electron
- is not equal to...
- Amplitude for electron antineutrino interaction with an electron

Electron neutrinos and antineutrinos are affected differently by interactions with matter → fake CP violation

Why does the mass hierarchy affect oscillations involving electron (anti)neutrinos?

Matter effect (neutrino case)

- Matter effect raises (or lowers) the energy state of the mass eigenstates
 - strength depends on electron neutrino content of each mass eigenstate

Antineutrino case

- Matter effect raises (or lowers) the energy state of the mass eigenstates
 - strength depends on electron neutrino content of each mass eigenstate

Splittings and mixing angles affected

 Mixing angles in matter (θ_M) are modified by the mass squared splitting in matter (Δm²_M)
 – e.g. simple 2-flavour case:

 $\sin 2\vartheta_{\rm M} = \frac{\Delta m^2 \sin 2\vartheta}{\Delta m_{\rm M}^2}$

- Also see it in full 3-flavour equations (a few slides back)

We consider multiple possible sources of systematic error

Systematic	Effect on sin²(θ₂₃)	Effect on Δm ² 32	
Normalisation	± 1.0%	± 0.2 %	
Muon E scale	± 2.2%	± 0.8 %	
Calibration	± 2.0 %	± 0.2 %	
Relative E scale	± 2.0 %	± 0.9 %	
Cross sections + FSI	± 0.6 %	± 0.5 %	
Osc. parameters	± 0.7 %	± 1.5 %	
Beam backgrounds	± 0.9 %	± 0.5 %	
Scintillation model	± 0.7 %	± 0.1 %	
All systematics	± 3.4 %	± 2.4 %	
Stat. Uncertainty	± 4.1 %	± 3.5 %	

In each case:

- The effect is propagated through the extrapolation
- We include those effects as pull terms in the fit
- The increase (in quadrature) of the parameter measurement error is recorded

NOvA Preliminary

NOvA Preliminary

20

- FD Data

Jeff Hartnell, CERN Seminar 2016

NOvA Preliminary

- (1) Estimate the underlying true energy distribution of selected ND events
- (2) Multiply by expected **Far/Near event ratio** and $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillation probability as a function of true energy
- (3) Convert FD true energy distribution into **predicted FD reco energy distribution**

Systematic uncertainties assessed by varying all MC-based steps

NOvA Far Detector

TASD: Totally Active Scintillator Design

67 m

Longitudinal sampling is ~0.15 X_0 , which gives: -- excellent μ -e separation

-- π^0 rejection capability

15.7 m

Total mass of 14 ktons

15.7 m

Jeff Hartnell, CERN Seminar 2016

An admirer

Extrusions

- PVC extruded through die to form 15.7m extrusions
- ~24,000 required for Far Detector.

Jeff Hartnell, CERN Seminar 2016

[L. Corwin]

75

Scintillation light travels along wavelength shifting fibers to end of manifold

UNIVERSITY Of Sussex Light detected in by avalanche photodiodes (APDs) that are sealed, cooled (to -15 °C) and mated to the detector data acquisition system.

Jeff Hartnell, CERN Seminar 2016

Modules

- Many pieces must be brought together to form an active detector module
- Many undergrads working at module factory at the U of MN
- Cell interiors must be very reflective so scintillation light is not lost.

Assembly

University of Sussex

Jeff Hartnell, CERN Seminar 2016

[L. Corwin] ⁷⁹

Very cool time lapse video: <u>http://www.youtube.com/watch?v=gFpK00WJI90&sns=tw</u>

