

Applications for high energy physics (HEP)

- ☐ modern big particle detectors require extensive R&D, simulation and testing
- ☐ test beams are available only at big accelerator labs
- e- from PA may pioneer complementary ways to test & calibrate detectors

but there are considerable differences:

- ☐ in conventional test beams
 - o variety of available particles: π[±], K[±], p, n, μ[±], e[±], gamma
 - particles arrive randomly «one at a time» (= time that can be resolved by the detector), low average current, low pile-up (desired)
- ☐ in LWFA generated beams:
 - only electrons (primary beam)
 - electrons arrive at the same time: massive pile-up, p < 5-10 GeV/c

currently available test beams

- □ example: CERN North Area secondary beam
 - SPS: p(450GeV) \rightarrow primary target \rightarrow π^+,π^-,π^0
 - \circ π⁺,π ⁻ → secondary target → μ ⁺ μ ⁻, neutrinos
 - \circ π⁰ → decay to 2γ → secondary target → e+,e- (max 180 GeV/c)
 - o energy selection by dipole and collimator slit (∆p/p < 1 ‰)
 - one SPS "spill" (4sec) every 17sec
 - o also: ions, neutrons, kaons,
- ☐ users are happy with (and actually want)
 - less than one particle every few nanoseconds (on average)
- ☐ large panel of users
 - physics experiments
 - particle detector development and calibration ->

Lab simulation of high E energy EM showers

Calorimetry (in HEP)

■ measurement of particle energy by total absorption → particle shower

Motivation

- ☐ response linearity
- readout saturation
- detector calibration at unavailable energies

Method

- Produce bunch of N electrons with identical energie E_e (p selection)
- ☐ Measure N precisely (enough): $\Delta E_B \sim \Delta N/N \times E_B$
- ☐ concentrate to spot of the size of an EM shower after a few X0 ☐ What bunch characteristics are needed to
- What bunch characteristics are needed to simulate best energy deposit of one particle E₀

Testing particle detectors at high occupancies

- Trackers, calorimeters
 - o in general: detectors with intrinsic particle separation capabilities
 - fine granularity: CMS HGCAL, LC detectors fine
 - particle flow analysis (PFA) may work only at <1TeV energy
 - □ occupancy: number of particles arriving simultaneously in one detector cell (transverse)
 - ☐ Fast calibration of big detector modules (alternative to position scanning) at "low" energies (1-5 GeV)
 - ☐ also: DAQ stress test (low rate, big events)
 - study of reconstruction and particle separation

beam conditioning for HEP applications

HE electromagnetic shower simulation (« 1000x5GeV=5TeV »)

simultaneous iradiation of detectors at high occupancies

Challenges for HEP applications

- □ reducing the peak particle flux (→ momentum selection)
- ☐ focussing the selected beam to shower size dimensions
 → emittance
- ☐ measuring particle flux to sufficient precision

HE electromagnetic shower simulation:

 What bunch of N electrons of identical energy E_B= O(1-5GeV) generates a shower that ressembles most a shower generated by one electron (positron, gamma) of E=NxE_B?