BEAM TRANSPORT AND ENVIRONMENT SIMULATION, A (Geant4) BIASED VIEW

EuPRAXIA Workshop

October 2016

Marc Verderi LLR/Ecole polytechnique

USING "STANDARD" HEP TOOLS

- EuPRAXIA will implement an innovative technique for accelerating electrons
- But once accelerated, these e⁻ are just "regular" electrons in the GeV range
- "Standard" simulation tools of particle transport in matter used in HEP are hence well suited to simulate transport of these electrons in beam lines and interactions of these e- (and subsequent daughters) in the environment

- Limitations of HEP transport codes:
 - Acceleration phase in plasma involves collective effects
 - In the plasma
 - In the beam
 - that are beyond the scope of the HEP particle transport codes
 - These transport codes assume:
 - Independent particles
 - Immutable materials
 - This, by default.
 - With a toolkit like Geant4, it is always possible to work +/- hard to move +/- away from these assumptions... (if very needed).

MULTI-THREADING: THE INTEREST FOR BIG APPLICATIONS

BEAM TRANSPORT SOFTWARES

- Tools based on Geant4 like BDSIM or G4Beamline provide functionalities to transport beams
 - Provide a layer of functionalities built on top of Geant4 libraries
 - Meaning the physics interactions are the Geant4 ones
- These beam line simulation tools can be found at:
 - https://twiki.ph.rhul.ac.uk/twiki/bin/view/PP/JAI/BdSim
 - http://www.muonsinternal.com/muons3/G4beamline
- G4beamline more oriented to muons transport
- BDSIM used by ILC, CLIC, XFEL, etc.
 - Certainly a good candidate to consider for EuPRAXIA

BDSIMBeam Delivery SIMulation

- Transport particles through accelerators and detectors
- Provides:
 - Single particle Monte-Carlo simulations of particle accelerators
 - Simulation of beam loss in a particle accelerator
 - Simulation of detector backgrounds from halo and machine background sources
- Beam line described
 - Using pre-defined elements:

- ... or user-defined ones...
- ... or imported from other tools such as MAD-X (MAD8) .
- Interfaced with ROOT for analysis (histograms, etc.)

ENVIRONMENT SIMULATION

- Mainly regarding radioprotection issues
 - With in particular the case of shielding
- In itself, this does not involve special physics
 - But the setup makes the simulation of the problem very slow, sometimes impracticable...

- There are techniques to overcome such difficulties
 - Called "biased simulation", "variance reduction", "event biasing"...
 - They are aiming at boosting the simulation of "rare events"
- In the case of the shielding, several techniques exist

ILLUSTRATION WITH NEUTRONS

- This is one example, but several techniques exist
 - In addition, Geant4 allows you to create your own.
- One comment though:
 - These are powerful techniques, but delicate to handle

CONCLUSION

- Beam transport and environment simulations at EuPRAXIA do not seem to face difficulties at the level of principles
- Existing HEP tools look well adapted
- Geant4 is well suited
 - Both for functionalities and physics coverage
- Beam transport can be tried with BDSIM
 - Good candidate to start with
- Acceleration techniques also exist to treat problems like the radioprotection one
- Of course, this does not mean that practical work is straightforward!
- Note: as Geant4 member I underlined Geant4, but other tools exist: FLUKA, MCNP, etc.