Static Analysis Suite

Plans for the static analysis tool

October 31st, 2016

SFT Group Meeting

Joschka Lingemann
Benedikt Hegner, Danilo Piparo

EP-SFT - CERN

What is SAS?
What do we solve with SAS?

Static code analysis: Checking code without executing it

i.e. before / during compilation /%

What does th at mea n? St?‘;uiizj:r?21[.)12((:)Li>:/i)rs§std::vector<float>& ’;: :PO1€t3D ce

auto currentpair = layers.at(0);

s your code thread-safe? o {/\/

Are there performance bottle necks?
Is new code conform with your coding conventions?
Are you exploiting the new C++11/14/17 features?

SAS helps to answer these questions!

Joschka Lingemann 2

What is SAS?
A tew words on history

Many checkers originate from the CMS software
First static analysis efforts in CMS 2012
(T. Hauth et. al.)
Extracting checkers into standalone tool 2013
(F. Bartek, D. Piparo)
Major redesign in 2015 and contributions by GSoC Student

+ Adaptation for big software projects (Gaudi / FCCSW, ROQOT) 2016

(D. Ho)

Joschka Lingemann

What is SAS?

How we use the clang ecosystem in SAS

Wraps clang compiler and clang tools
compiler builds abstract syntax tree:
> full information about your code
>~ examine tree in “checkers”
tools for modernisation & formatting
> use checkers and tools on

equal footing

Generate report with all information

Joschka Lingemann

SAS Wrappers

SAS

Clang

Checkers Q Compiler

Clang Tools

N7

N

Web-based
Report

Why do you want to use SAS?

Where does SAS improve on the clang static analyser:

Convenience:
» Easier to write new checkers
» When using CMake: Use SAS with one command

~ Clang tools + static analysis: Only “compile” once

Reporting mechanism:

> Projects with dependencies — scan-build is a nightmare

> Show the information that is relevant

Joschka Lingemann

Why do you need SAS?

Why choose SAS over commercial solutions?
Price point:
~ SAS + clang are free open source software
Modularity + Open Source:
> Flexibility: Add project specific checkers
> Community driven effort to develop more checks
Framework to accommodate specific and generic checks

> Projects can pick and choose what is suitable

Joschka Lingemann

What are the SAS features?

Existing Functionality

Static Analysis

Thread Safety, Performance

False Positives:

» Black / white listing \w
comments

« Black / white listing files

e Black listing folders

Running SAS:

SAS Wrappers

SAS

Clang

Checkers Compiler

Clang Tools

» Run on single files using wrappers:

« Need all compiler arguments

 Should use compilation database

Joschka Lingemann

N

Web-based
Report

Scaling:

Coding Conventions
clang-format: formatting
clang-modernize: C++11/14
(clang-tidy soon)

Naming conventions

o test against them

 generate from reg-expr

Demonstrator on ROOT code base,

Integration into Gaudi fully tested

CMake integration

If your project’s build system is CMake based:

Entry point is a single CMake-function:

find_package(sas)
enable_sas([options])

Creates new targets:
- Apply suggestions by clang-format & clang-modernize

- Generate the report (after compilation)

Joschka Lingemann

The SAS Report — an example

project summary warnings per package original vs. suggestion diff
(includes formatting)

FCCSW

v FWCore [152] Original File

(FCCSW/FWCore/components/FCCDataSvc.cpp)/components/FCCDataSvc.cpp) Fonmatiod Fie

Vv components (41 i : -
£f1 #include "FCCDataSvc.h" f 1 #include "FCCDataSvc.h"
2 2
FCCDataSvc.cpp Q
3 #include "GaudiKernel/SvcFactory.h" 3 '#include "GaudiKernel/SvcFactory.h"
Podiolnput.cpp o 4 #include "GaudiKernel/ISvcLocator.h 4 '#include "GaudiKernel/ISvcLocator.h
5 #include "GaudiKernel/IConversionSvc.h" 5 '#include "GaudiKernel/IConversionSvc.h"
PodioOutput.cpp [25] - .
7 // Instantiation of a static factory class used by clients to create 7 // Instantiation of a static factory class used by
PodioOutput.h o 8 |// instances of this service 8 |// instances of this service
9 DECLARE_SERVICE_FACTORY(FCCDataSvc) 9 DECLARE_SERVICE_FACTORY(FCCDataSvc)
FCCDataSvc.h (3] 10 10
11 ! /// Standard Constructor 11./// Standard Constructor
Podiolnput.h o n 12 FCCDataSvc::FCCDataSvc(const std::string& name,ISvcLocator* svc): n 12 FCCDataSvc::FCCDataSvc(const std::string& name, I!
> (name, svc) {}
> FWCore 6 13 PodioDataSvc (name,svc) {
14 '}

Let’s apply clang-format & -modernize: make apply

Joschka Lingemann http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html 9

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

The SAS report — after SAS-apply

FCCSW @

> FWCore (4) Original File (FCCSW/Detector/DetSegmentation/src/GridPhiEta.cpp)
t 1 #include "DetSegmentation/GridPhiEta.h"
® Generation (17] ,
) 3 namespace DD4hep {
» Reconstruction (9]
[sas.CodingConventions.FCCSW.Namespace] Namespace names may only contain lowercase
Vv Detector @ |
etters
v DetFCChhHCalTile o
StatusCode ClassicalRecoGeoSvc::binCylinderLayers(LayerVector& layers, Alg::Point3D CO nve n ti O n S

[sas.Performance.ArgSizeChecker] Function parameter passed by value with size of parameter
'192' bits > max size '128' bits parameter type 'class ROOT::Math::PositionVector3D, class

ROOT::Math::DefaultCoordinateSystemTag>' function 'binCylinderLayers' class p e rfO r m a n Ce

'ClassicalRecoGeoSvc'
checks

int value = 0;

compiler
warnings

unused variable ‘value' [-Wunused-variable]

Joschka Lingemann http://fccsw.web.cern.ch/fcesw/static_checks/FCCSW/index.html

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

Things we’d like to do

SAS improves existing functionality of clang
Lots of ideas to improve usability
> More interactivity in the web-report
> More flexibility in configuring SAS for your project
> More ways to run SAS (e.g. use compilation database)
Upcoming clang API changes and tool deprecations need to be accounted for
We could try and re-integrate this into clang
Doing that requires more polish
> Collect “internal” feed-back - find more HEP / CERN users first

However development so far as a side project

Joschka Lingemann 11

ldeas on how to achieve that

Need somebody who works on the project full-time

- At least for a couple of months

Looking for students via:
Knowledge transfer: “promote innovative work [...] that
have potential applications outside CERN”
Portuguese trainee program: Recently graduated students

from technical fields of study

Joschka Lingemann

12

Why knowledge transfer &
Portuguese trainee programs?

Static code analysis is also useful outside CERN:
Many commercial solutions:
>~ Expensive licenses - Not viable for small companies
-+ Afew open source solutions
> Most have limited functionality
(e.g. treat code as plain text and use regular expressions)
We think SAS is filling a gap:
Extend clang analyser to be more useful (could be re-integrated)

Especially with customisability - Interesting for smaller projects

Joschka Lingemann

13

~eedback greatly appreciated:

@ dpiparo/SAS fccsw.web.cern.ch

https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

Additional Material

What are the SAS features?
Existing Checker Functionality

Thread Safety
- Avoid casting away constness
- Discourage usage of non-const static variables
- Flag mutable members for further investigation
Code Performance
+ Check size of arguments passed by value
- Encourage usage of fast math
Common Sense
- no “using namespace std”, please

- Discourage usage of std::cout

Joschka Lingemann

16

