
Joschka Lingemann
Benedikt Hegner, Danilo Piparo

EP-SFT - CERN

October 31st, 2016

Static Analysis Suite
Plans for the static analysis tool

SFT Group Meeting

Joschka Lingemann

What is SAS?
What do we solve with SAS?

•Static code analysis: Checking code without executing it

• i.e. before / during compilation

•What does that mean?

• Is your code thread-safe?

• Are there performance bottle necks?

• Is new code conform with your coding conventions?

• Are you exploiting the new C++11/14/17 features?

•SAS helps to answer these questions!

2

StatusCode binDiscLayers(std::vector<float>& bValues, Alg::Point3D center) const {
 if (layers.size()==1) {
 auto currentpair = layers.at(0);
 auto currentdisc = std::shared_ptr<DiscLayer> (currentpair.first);
 if (currentdisc) {

 g::Point3D ce

Joschka Lingemann

What is SAS?
A few words on history

•Many checkers originate from the CMS software

• First static analysis efforts in CMS 2012  

(T. Hauth et. al.)

• Extracting checkers into standalone tool 2013  

(F. Bartek, D. Piparo)

• Major redesign in 2015 and contributions by GSoC Student

• Adaptation for big software projects (Gaudi / FCCSW, ROOT) 2016  

(D. Ho)

3

Joschka Lingemann

What is SAS?
How we use the clang ecosystem in SAS

•Wraps clang compiler and clang tools

• compiler builds abstract syntax tree:

‣ full information about your code

‣ examine tree in “checkers”

• tools for modernisation & formatting

‣ use checkers and tools on  

equal footing

•Generate report with all information

4

Web-based
Report

SAS Wrappers

Clang
Compiler

SAS
Checkers

Clang Tools

Joschka Lingemann

Why do you want to use SAS?

•Where does SAS improve on the clang static analyser:

• Convenience:

‣ Easier to write new checkers

‣ When using CMake: Use SAS with one command

‣ Clang tools + static analysis: Only “compile” once

• Reporting mechanism:

‣ Projects with dependencies — scan-build is a nightmare

‣ Show the information that is relevant

5

Joschka Lingemann

Why do you need SAS?

•Why choose SAS over commercial solutions?

• Price point:

‣ SAS + clang are free open source software

• Modularity + Open Source:

‣ Flexibility: Add project specific checkers

‣ Community driven effort to develop more checks

• Framework to accommodate specific and generic checks

‣ Projects can pick and choose what is suitable

6

Joschka Lingemann

• generate from reg-expr• Black listing folders

What are the SAS features?
Existing Functionality

7

Web-based
Report

SAS Wrappers

Clang
Compiler

SAS
Checkers

Clang Tools

clang-format: formatting
clang-modernize: C++11/14
(clang-tidy soon)

Coding Conventions
Thread Safety, Performance
False Positives:
• Black / white listing \w

comments
• Black / white listing files

Static Analysis

Running SAS:
• Run on single files using wrappers:

• Need all compiler arguments
• Should use compilation database

• Integration with CMake
• Get Report in the end
• Currently most convenient

• test against them

Naming conventions

Scaling:

Demonstrator on ROOT code base,
Integration into Gaudi fully tested

Joschka Lingemann

CMake integration

•If your project’s build system is CMake based:

• Entry point is a single CMake-function:

•Creates new targets:

• Apply suggestions by clang-format & clang-modernize

• Generate the report (after compilation)

8

find_package(sas)
enable_sas([options])

Joschka Lingemann

The SAS Report — an example

9

original vs. suggestion diffwarnings per package
(includes formatting)

project summary

Let’s apply clang-format & -modernize: make apply

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

Joschka Lingemann

The SAS report — after SAS-apply

10

performance
checks

compiler
warnings

conventions

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

Joschka Lingemann

Things we’d like to do

•SAS improves existing functionality of clang

• Lots of ideas to improve usability

‣ More interactivity in the web-report

‣ More flexibility in configuring SAS for your project

‣ More ways to run SAS (e.g. use compilation database)

• Upcoming clang API changes and tool deprecations need to be accounted for

•We could try and re-integrate this into clang

• Doing that requires more polish

‣ Collect “internal” feed-back - find more HEP / CERN users first

•However development so far as a side project

11

Joschka Lingemann

Ideas on how to achieve that

•Need somebody who works on the project full-time

• At least for a couple of months

•Looking for students via:

• Knowledge transfer: “promote innovative work […] that

have potential applications outside CERN”

• Portuguese trainee program: Recently graduated students

from technical fields of study

12

Joschka Lingemann

Why knowledge transfer &
Portuguese trainee programs?

•Static code analysis is also useful outside CERN:

• Many commercial solutions:

‣ Expensive licenses - Not viable for small companies

• A few open source solutions

‣ Most have limited functionality  

(e.g. treat code as plain text and use regular expressions)

•We think SAS is filling a gap:

• Extend clang analyser to be more useful (could be re-integrated)

• Especially with customisability - Interesting for smaller projects

13

Feedback greatly appreciated:

dpiparo/SAS fccsw.web.cern.ch

https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
https://github.com/dpiparo/SAS
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html
http://fccsw.web.cern.ch/fccsw/static_checks/FCCSW/index.html

Additional Material

Joschka Lingemann

What are the SAS features?
Existing Checker Functionality

•Thread Safety

• Avoid casting away constness

• Discourage usage of non-const static variables

• Flag mutable members for further investigation

•Code Performance

• Check size of arguments passed by value

• Encourage usage of fast math

•Common Sense

• no “using namespace std”, please

• Discourage usage of std::cout

16

