Top Quark Properties Measurement at the LHC (excluding EFT)

Standard Model at the LHC 2017 Nikhef, NETHERLANDS / May 2 - 5, 2017

Lucio Cerrito University and INFN, Rome II

on behalf of the ATLAS and CMS Collaborations

Physics of Top Quarks

oTest of SM (production, decay, coupling....etc)

•Top quark does not hadronize: momentum and spin transferred to decay products

•Search for processes with similar signature (t', Z'...)

 Mass is a fundamental parameter of the SM, and crucial for SM constraints via loop diagrams

Top Events - Terminology

- Resolved: reconstructs well separated final state of top pair
- Boosted: hadronic top merged into one large-radius jet
- Particle Level: observable objects (stable leptons and jets clustered from stable particles)
- Fiducial phase space: close to detector acceptance
- Full phase space: full extrapolation

 $|V_{tb}| \sim 1$, and $M_t > M_W + M_b \implies t \rightarrow Wb (\sim 100\%)$

Outline and Datasets in this talk

• Top Quark Mass

- * hadronic channel, 8 TeV
- * I+jets channel, 13 TeV
- * dilepton channel, 8 TeV
- Alternative techniques combination

ATLAS

• Charge Asymmetry

OCPT, CP

- Top-antitop mass difference, 8 TeV
- * CPV in top production / decay, 8 TeV
- * CP asymmetries in B from top, 8 TeV

Lucio Cerrito (Rome II) - Top Quark Properties at the LHC -

ATLAS

Signature: (all hadronic) ≥ 6 jets ($\geq 2 b$) & E_{Tmiss} < 60 GeV

Method: Template fits to Ratio 3-jets (top) /2-jets (W) mass and F_{bkg}

- Minimised- χ^2 kinematic event reconstruction; POWHEG-PYTHIA tt modelling
- o ±1.1 GeV total uncertainty
- Largest systematics from Had. modeling (PYTHIA vs. HERWIG 0.6 GeV), JES/bJES (0.6/0.3 GeV)

Signature: (I+jets) 1 isolated $\mu \& \ge 4$ jets ($\ge 2 b$).

Method: Likelihood fit (ideogram) to mtreco and JES (2 parameter)

- χ^2 kinematic event reconstruction; POWHEG-PYTHIA tt modelling
- o ± 0.8 GeV total uncertainty
- Largest systematics from Hadronisation modeling (PHYTHIA vs. HERWIG 0.4 GeV) and *b*-fragmentation, PS (0.2 GeV)
 CMS

NEW

[CMS-PAS-TOP-16-022 (March 2017)]

Signature: (dilepton) 2 isolated OS e/ μ & E_{Tmiss} >40 GeV & ≥2 *b* jets. Method: Template fits of M_{*l*-*b*} (mass of lepton and b-jet), M_{T2}^{bb}, M_{*l*-*bv*} to m_t, JES • MADGRAPH-PYTHIA *tt* modelling

• Largest systematics from JES (0.45 GeV) and b quark fragmentation (0.4 GeV)

m_{top}= 172.22 ± 0.18 (stat.) + 0.89/-0.93 (syst.) GeV

Lucio Cerrito (Rome II) - Top Quark Properties at the LHC -

Top Quark Mass: combination

ATLAS+CMS Preliminary	LHC <i>top</i> WG	m _{top} summary,	s = 7-8 TeV	Aug 2016
World Comb. Mar 2014 stat total uncertainty	I, [7]	total sta	▼ 	
$m_{top} = 173.34 \pm 0.76 \ (0)$.36 ± 0.67) GeV	$m_{top} \pm total$ (s	tat \pm syst)	s Ref.
ATLAS, I+jets (*)		172.31±1.	55 (0.75 ± 1.35)	7 TeV [1]
ATLAS, dilepton (*)		173.09 ± 1	63 (0.64 ± 1.50)	7 TeV [2]
CMS, I+jets	┠╌╂┻╂╌┨	173.49 ± 1	.06 (0.43 ± 0.97)	7 TeV [3]
CMS, dilepton	┝──┼╇╂┯┯┨	172.50 ± 1	52 (0.43 ± 1.46)	7 TeV [4]
CMS, all jets	┝╾┼╼╸┼╾┥	173.49 ± 1	41 (0.69 ± 1.23)	7 TeV [5]
LHC comb. (Sep 2013)		173.29 ± 0	.95 (0.35 ± 0.88)	7 TeV [6]
World comb. (Mar 2014)		173.34 ± 0	.76 (0.36 ± 0.67)	1.96-7 TeV [7]
ATLAS, I+jets	┝┼╼╸┼╛	172.33 ± 1	27 (0.75 ± 1.02)	7 TeV [8]
ATLAS, dilepton		173.79 ± 1	41 (0.54 ± 1.30)	7 TeV [8]
ATLAS, all jets		175.1±1.8	(1.4 ± 1.2)	7 TeV [9]
ATLAS, single top		172.2 ± 2.1	(0.7 ± 2.0)	8 TeV [10]
ATLAS, dilepton	┝┼╪╪┥	172.99 ± 0	85 (0.41±0.74)	8 TeV [11]
ATLAS, all jets		173.80 ± 1	15 (0.55 ± 1.01)	8 TeV [12]
ATLAS comb. (June 2016)	 	172.84 ± 0	.70 (0.34 ± 0.61)	7+8 TeV [11]
CMS, I+jets	⊢┥┥	172.35 ± 0	51 (0.16 ± 0.48)	8 TeV [13]
CMS, dilepton	┝──┼●┼──┤	172.82 ± 1	23 (0.19 ± 1.22)	8 TeV [13]
CMS, all jets	⊢++ +	172.32 ± 0	64 (0.25 ± 0.59)	8 TeV [13]
CMS, single top	┠┼╼╾╂┨	172.60 ± 1	.22 (0.77 ± 0.95)	8 TeV [14]
CMS comb. (Sep 2015)	⊢≓≓ -1	172.44 ± 0	.48 (0.13 ± 0.47)	7+8 TeV [13]
(*) Superseded by results shown below the line	[1] ATLA: [2] ATLA: [3] JHEP [4] Eur.Pi [5] Eur.Pi	S-CONF-2013-046 [6 S-CONF-2013-077 [7 12 (2012) 105 [8 nys.J.C72 (2012) 2202 [8 nys.J.C74 (2014) 2758 [1] ATLAS-CONF-2013-102] arXiv:1403.4427] Eur.Phys.J.C75 (2015) 330] Eur.Phys.J.C75 (2015) 158 0] ATLAS-CONF-2014-055	[11] arXiv:1606.02179 [12] ATLAS-CONF-2016-054 [13] Phys.Rev.D93 (2016) 072004 [14] CMS-PAS-TOP-15-001
165 170	175	$\overline{\mathbf{b}}$	180	185
m _{top} [GeV]				

Top Mass: Alternative techniques

- Cross-check and support "standard techniques" of I+j, dil., had. channels
- o 0.75 GeV precision
- Further combination does not improve yet on CMS Run I "standard" (0.48 GeV)
- Will improve with 13 TeV data

Combined <i>m</i> _t results	Legacy	Alternative	Combined	
	$\delta m_{\rm t}({\rm GeV})$	$\delta m_{\rm t}({\rm GeV})$	$\delta m_{\rm t}({\rm GeV})$	
Experimental uncertainties				
Method calibration	0.03	0.08	0.04	
Jet energy corrections				
– JEC: Intercalibration	0.01	0.06	0.02	
– JEC: In situ calibration	0.12	0.16	0.12	
– JEC: Uncorrelated non-pileup	0.10	0.26	0.10	
Lepton energy scale	0.01	0.13	0.01	
$E_{\rm T}^{\rm miss}$ scale	0.03	0.04	0.04	
Jet energy resolution	0.03	0.03	0.03	
b tagging	0.05	0.02	0.05	
Pileup	0.06	0.07	0.06	
Secondary vertex mass	n/a	0.04	< 0.01	
Backgrounds	0.04	0.08	0.04	
Trigger	< 0.01	< 0.01	< 0.01	
Modeling of hadronization				
JEC: Flavor	0.33	0.33	0.31	
b jet modeling	0.14	0.22	0.14	
Modeling of perturbative QCD				
PDF	0.04	0.11	0.04	
Ren. and fact. scales	0.10	0.31	0.10	
ME-PS matching threshold	0.08	0.22	0.08	
ME generator	0.11	0.08	0.11	
Single top modeling	n/a	0.04	0.01	
Top quark $p_{\rm T}$	0.02	0.23	0.02	
Modeling of soft QCD				
Underlying event	0.11	0.11	0.11	
Color reconnection modeling	0.10	0.10	0.10	
Uncertainties (GeV)				
Total systematic	0.47	0.72	0.46	
Statistical	0.13	0.21	0.13	
Total Uncertainty	0.48	0.75	0.48	

Lucio Cerrito (Rome II) - Top Quark Properties at the LHC -

NEW

Top Mass: Pole and MC mass

February 2017 Top-quark pole mass measurements **D0** σ(tt̄), 1.96 TeV 167.50 ^{+5.20} _{-4.70} GeV PLB 703 (2011) 422 MSTW08 approx. NNLO Pole Mass determination: **D0** σ(tt), 1.96 TeV 169.50 ^{+3.30} _{-3.40} GeV D0 Note 6453-CONF (2015) • Pair production cross MSTW08 NNLO section **D0** σ(tt̄), 1.96 TeV ₄ 172.80 ^{+3.40} _{-3.20} GeV PRD 94, 092004 (2016) • Gluon radiation (tt+j) MSTW08 NNLO **ATLAS** σ(tt̄), 7+8 TeV 172.90 ^{+2.50} _{-2.60} GeV EPJC 74 (2014) 3109 ATLAS tt+j shape, 7 TeV 173.70 ^{+2.28} _{-2.11} GeV JHEP 10 (2015) 121 $\mathcal{R}(m_t^{ ext{pole}},
ho_s) = rac{1}{\sigma_{tar{t}+1 ext{-jet}}} rac{\mathrm{d}\sigma_{tar{t}+1 ext{-jet}}}{\mathrm{d}
ho_s}(m_t^{ ext{pole}},
ho_s),$ **CMS** σ (**tt**), 7+8 TeV 173.80 ^{+1.70} _{-1.80} GeV JHEP 08 (2016) 029 NNPDF3.0 $ho_s = rac{2m_0}{\sqrt{s_{tar{t}+1- ext{jet}}}}, \quad ext{m}_0 = 170 ext{ GeV}$ CMS $\sigma(t\bar{t})$ 13 TeV 172.70 ^{+2.40} _{-2.70} GeV arXiv:1701.06228 (2017) CT14 CMS tt+j shape, 8 TeV 169.90 ^{+4.52} _{-3.66} GeV TOP-13-006 (2016) World combination 173.34 ^{+0.76} _{-0.76} GeV ATLAS, CDF, CMS, D0 arXiv:1403.4427, standard measurements 150 160 170 180

Lucio Cerrito (Rome II) - Top Quark Properties at the LHC -

m, [GeV]

Charge Asymmetry

$$A_{c} = \frac{N(\Delta|y|>0) - N(\Delta|y|<0)}{N(\Delta|y|>0) + N(\Delta|y|<0)} \Delta|y| \equiv |y_{t}| - |y_{t}|$$

- Analyses use boosted and resolved final states
- Probed at low and high mtt and ptt
- Precision at the level of 0.5%, with sizeable systematic uncertainties

Arises at higher than tree-level order in the $qq \rightarrow tt$ process (NLO)

[Khun, Rodrigo, PRD 59 054017; Rodrigo, arXiv:1207.0331v1 (2012)]

Top mass and CPT

Signature: (I+jets) 1 isolated $e/\mu \& \ge 4$ jets ($\ge 1 b$).

Method: Mass difference between top and anti-top, Likelihood fit (ideogram)

- χ^2 kinematic event reconstruction
- o 0.2 GeV precision
- Statistically dominated, syst. at ±0.09 GeV (mainly *b-bbar* JES and *b* tagging)

CP violation in top

Signature: (I+jets) 1 isolated $e/\mu \& \ge 4$ jets ($\ge 2 b$).

Method: T-odd triple product correlations from momentum vectors

Minimised-χ² kinematic event reconstruction
Likelihood fit for signal and background

 $A_{\rm CP}(O_i) = \frac{N_{\rm events}(O_i > 0) - N_{\rm events}(O_i < 0)}{N_{\rm events}(O_i > 0) + N_{\rm events}(O_i < 0)}.$

$$O_{2} = \epsilon(P, p_{b} + p_{\overline{b}}, p_{\ell}, p_{j_{1}}) \xrightarrow{\text{lab}} \propto (\vec{p}_{b} + \vec{p}_{\overline{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}),$$

$$O_{3} = Q_{\ell} \epsilon(p_{b}, p_{\overline{b}}, p_{\ell}, p_{j_{1}}) \xrightarrow{\text{b}\overline{b} CM} \propto Q_{\ell} \vec{p}_{b} \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}),$$

$$O_{4} = Q_{\ell} \epsilon(P, p_{b} - p_{\overline{b}}, p_{\ell}, p_{j_{1}}) \xrightarrow{\text{lab}} \propto Q_{\ell} (\vec{p}_{b} - \vec{p}_{\overline{b}}) \cdot (\vec{p}_{\ell} \times \vec{p}_{j_{1}}),$$

$$O_{7} = q \cdot (p_{b} - p_{\overline{b}}) \epsilon(P, q, p_{b}, p_{\overline{b}}) \xrightarrow{\text{lab}} \propto (\vec{p}_{b} - \vec{p}_{\overline{b}})_{z} (\vec{p}_{b} \times \vec{p}_{\overline{b}})_{z}.$$

[JHEP 03 (2017) 101 (November 2016)]

		A' _{CP} (%)		A _{CP} (%)
	e + jets	μ + jets	ℓ + jets	ℓ + jets
<i>O</i> ₂	$-0.19 \pm 0.61 \pm 0.59$	$+0.46 \pm 0.57 \pm 0.65$	$+0.16 \pm 0.42 \pm 0.44$	$+0.3 \pm 1.1$
O_3	$+0.02\pm 0.61\pm 0.59$	$-0.59 \pm 0.57 \pm 0.65$	$-0.31 \pm 0.42 \pm 0.44$	-0.8 ± 1.6
O_4	$-0.17 \pm 0.61 \pm 0.59$	$-0.10 \pm 0.57 \pm 0.65$	$-0.13 \pm 0.42 \pm 0.44$	-0.4 ± 1.7
O_7	$-0.38 \pm 0.61 \pm 0.59$	$+0.43 \pm 0.57 \pm 0.65$	$+0.06 \pm 0.42 \pm 0.44$	$+0.1 \pm 0.8$

un-corrected / corrected - for detector effects

CP asymmetries in *b* from top

Top pairs: a.k.a. "**a new B factory**" ! Can probe the D0 single/di-muon anomaly $A_{dir}^{b} \approx 0.3\%$ $A_{dir}^{c} \approx 1\%$ PRD 89, (2014) 012002

Signature: (I+jets) 1 isolated $e/\mu \& E_{Tmiss} > 25 \text{ GeV}$ & ≥ 4 jets ($\geq 1 b$).

Method: Soft muon-*b*, Likelihood fit, Unfolded

 $A_{SS} = \frac{\left(\overline{N^+}\right)^{-} \left(\overline{N^-}\right)}{\left(\frac{N^{++}}{N^+}\right) + \left(\frac{N^{--}}{N^-}\right)}$

[JHEP 02 (2017) 071 (October 2016)]

 $A_{OS} = \frac{\sqrt{N^+}}{(N^+)}$

CP asymmetries in *b* from top

- Opposite Sign (OS)
- $t \rightarrow l^+ \nu \ b \rightarrow l^+ l^- X \sim 55\%$
- $t \to l^+ \nu \ (b \to \overline{b} \to \overline{c}) \to l^+ l^- X \sim 4\%$ $t \to l^+ \nu \ (b \to c) \to l^+ l^+ X \sim 28\%$
- $t \rightarrow l^+ \nu \ (b \rightarrow c\bar{c}) \rightarrow l^+ l^- X \sim 3\%$
- Same Sign (SS)
- $t \to l^+ \nu (b \to \overline{b}) \to l^+ l^+ X \sim 7\%$
- $t \to l^+ \nu (b \to \overline{b} \to c\overline{c}) \to l^+ l^+ X \sim 3\%$

 $A^{ss} = r_b A^{bl}_{\text{mix}} + r_{c\bar{c}} A^{bc}_{\text{mix}} + r_c A^{bc}_{\text{dir}} - (r_c + r_{c\bar{c}}) A^{cl}_{\text{dir}}$

$A^{os} = \tilde{r}_c A^{bc}_{\text{mix}} + \tilde{r}_b A^{bl}_{\text{dir}} + (\tilde{r}_c + \tilde{r}_{c\bar{c}}) A^{cl}_{\text{dir}}$

[JHEP 02 (2017) 071 (October 2016)]

Results	Data (10 ⁻²)	Existing limits (2 σ) (10 ⁻²)	SM (10^{-2})
A ^{ss}	-0.7 ± 0.8	—	$< 10^{-2}$ [1]
Aos	0.4 ± 0.5	_	< 10 ⁻² [1]
A_{\min}^b	-2.5 ± 2.8	< 0.1 [3]	$< 10^{-3}$ [2,3]
$A_{\rm dir}^{bl}$	0.5 ± 0.5	< 1.2 [4]	< 10 ⁻⁵ [1]
$A_{ m dir}^{cl}$	1.0 ± 1.0	< 6.0 [4]	< 10 ⁻⁹ [1]
$A_{\rm dir}^{bc}$	-1.0 ± 1.1	_	< 10 ⁻⁷ [5]

[1] PRL 110, 232002 (2013) [2] arXiv:1511.09466v1 [3] arXiv:1412.7515v1 (HFAG) [4] PRD 87, 074036 (2015) [5] PLB 694, 374 (2011)

• Competitive direct CP limits. The first limit on direct *b*-to-*c*

 $\circ \mathcal{O}$ (1%) precision reached (stat. limited), comparable to the D0 anomaly effect.

Summary

- O Dramatic improvements on top mass precision in the last few years, now well below 1 GeV
 → b fragmentation and hadronisation modelling becoming a significant limitation
- The large top datasets allow for the first time to perform *precision* measurements of charge and CP asymmetries. Currently to 0.5% —1.0%.
- First measurements of B properties from top decay.
- Most measurements have yet to use the large 13 TeV dataset, benefitting from the increased top cross section and the exceptional LHC performance. Expect very significant advances by Summer 2017

• Find out more at:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP/index.html http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/TOP/index.html

Additional Information

Signature: (dilepton) 2 isolated OS e/ μ & E_{Tmiss} >25 GeV & ≥2 jets (≥1 *b*). Method: Template fits to Reco. m_{*l*-*b*} (mass of lepton and b-jet)

- Minimum $< p_T >_{I-b}$ optimises reconstruction of the event
- \circ ± 0.8 GeV total uncertainty, most precise in dilepton channel to date
- Largest systematics from JES/bJES (0.5/0.3 GeV) and from Had. modeling/IFSR (0.2 GeV)

Top Width

Indirect determinations use $R_b = B(t \rightarrow Wb)/B(t \rightarrow Wq)$ or the single top (t-ch) cross section. Precision of O(0.1 GeV)

Direct determination focuses on mass lineshape.

SM: $\Gamma^{\text{NLO}} = 1.35 \pm \mathcal{O}(1\%)$ GeV ($m_{\text{t}} = 173.3$ GeV and $\alpha_{\text{S}} = 0.118$)

Signature: (dilepton) 2 isolated OS e/μ & ≥ 2 jets ($\geq 1 b$).

Method: M_{lb} inclusive spectrum, with sensitivity at low M_{lb}; 2-D fit to signal and width

- $\circ\,$ First direct bound on Γ_t at the LHC
- Most precise direct bound on Γ_t

0.6<Γ_{top}<2.5 GeV (95% C.L.)

[CMS-PAS-TOP-16-019 (September 2016)]

Lucio Cerrito (Rome II) - Top Quark Properties at the LHC -

19/16