

Measurements of Diboson Production and Vector Boson Scattering

Hal Evans, Indiana University for the ATLAS & CMS Collaborations

SM@LHC 2017 Nikhef Science Park, Amsterdam, the Netherlands 2 – 5 May, 2017

Outline

CCMS

Diboson Physics

Cross-Sections & Anomalous couplings

Experimental Considerations

Datasets, Triggers, Objects, Backgrounds

Measurements

- Cross-Section measurements & comparison to theory
- Anomalous Triple & Quartic Gauge Couplings
- Summaries (>50 ATLAS & CMS publications in this area !)
 - > Few more details on recent results (14 in last 6 months !)

Future Prospects

Upgrades & projected sensitivity

Diboson Physics

Diboson Production and the SM

Total Cross-Section dominated by QCD effects

Test higher order QCD calculations: (N)NLO

EWK production enhanced in certain regions

- Test higher order QED, nature of EWSB, gauge structure of the SM and beyond

Vector Boson Scattering

Evans

Only certain multi-gauge-boson couplings are non-zero in the SM

- Tree-Level TGCs: WWZ, WWγ
- Tree-Level QGCs: WWWW, WWγγ, WWZZ, WWZγ
- Beyond SM physics can modify these couplings or lead to new ones

Anomalous couplings are probed using Effective Field Theory

Dimension 6 Operators ==> Triple Gauge Couplings

EFT only valid to New Physics Scale (Λ)

> Can use Form Factors to model cut-off: $f \rightarrow f \left(1 + \frac{s}{\Lambda}\right)^{-p}$

Experimental Considerations

Data Sets

pp Data Taking			ATLAS (fb⁻¹)		CMS (fb ⁻¹)	
Year	√s	BC	Delivered	Recorded	Delivered	Recorded
2010	7 TeV	50 ns	0.048	0.045	0.045	0.041
2011	7 TeV	50 ns	5.5	5.1	6.1	5.6
2012	8 TeV	50 ns	22.8	21.3	23.3	21.8
2015	13 TeV	25 ns	4.2	3.9	4.2	3.8
2016	13 TeV	25 ns	38.5	35.6	40.8	37.8

Representative threshold cuts on objects used in diboson analyses Photons

- $E_{T} > 15-25 \text{ GeV}$
- Leptons (W \rightarrow ev, μ v ; Z \rightarrow ee, $\mu\mu$)
 - Electrons: $p_T > 25$ GeV (lower for dileptons, e.g. > 17/12 GeV CMS)
 - Muons: $p_T > 25$ GeV (lower for dileptons, e.g. > 17/8 GeV CMS)
 - Taus: generally not reconstructed for these analyses
- Jets (W/Z \rightarrow qq ; other jets in the event)
 - Forward: $E_T > 30 \text{ GeV}$
 - Resolved (V \rightarrow jj): E_T > 25 GeV
 - Merged (V \rightarrow J): E_{T} > 200 GeV

Missing Energy (Neutrinos)

 $- E_{T^{miss}} > 40-100 \text{ GeV}$

Accessing TGCs & QGCs

Distinguishing characteristics of events with multi-boson vertices

Forward jets:
 high m_{ii} & Δy_{ii}, no color connect.

Anomalous Couplings: enhanced at high m(VV), p_T(V) ...

Triggering

Primary triggers used for Diboson analyses: Single Leptons (e/μ)

- $-\gamma\gamma$ results use diphoton triggers w/ E_{τ} thresholds: ~35/25 GeV
- Dilepton (ee, $\mu\mu$, $e\mu$) also used in some analyses
 - > ee: 12/12 GeV, μμ: 17-18/8 GeV

Representative Single-Lepton Trigger Thresholds

Note the use of increased thresholds & tighter isolation at higher luminosities

	Peak Lumi	ATI	LAS	C	MS
Year (√s)	(x 10 ³³ cm ⁻² s ⁻¹)	e-Threshold	μ-Threshold	e-Threshold	µ-Threshold
2011 (7 TeV)	3.7	22 GeV	18 GeV	Dileptor	n 17/8 GeV
2012 (8 TeV)	7.7	24 GeV (Iso) 60 GeV (no Iso)	24 GeV (Iso) 50 GeV (no Iso)	24 GeV (Iso)	27 GeV (Iso)
2015 (13 TeV)	5.0	24 GeV (Iso) 60 GeV (no Iso)	24 GeV (Iso) 50 GeV (no Iso)	27 GeV (Iso)	27 GeV (Iso) 50 GeV (no Iso)
2016 (13 TeV)	13.8	26 GeV (Iso) 60 GeV (no Iso)	26 GeV (Iso) 50 GeV (no Iso)	27 GeV (Iso)	
H. Evans		Dibosons & VBS -	SM@LHC: May 2, 201	7	11

Backgrounds & Systematics

Recent results give good overview of main diboson issues

- All major backgrounds are estimated using data-based methods
 - > Usually employing background-enhanced Control Regions

Exp Vs	(TeV)	Channel	Reference	Main Bgrds	Main Systs
ATLAS	8	γγ	arXiv:1704.03839	Fake γ (j→πº/η)	Photon ID efficiency
CMS Snews	13	ZZ+jets			
CMS Energy	13	$ZZ \rightarrow 4\ell$	CMS-PAS-SMP-16-017	Z+jets, WZ+jets	ℓ efficiency, trigger eff
	7,8	Wjj	arXiv:1703.04362	tt + Wt, multijet	Jet related
ATLAS	13	WW \rightarrow ev μ v	arXiv: 1702.04519	tt + Wt	Jet related
ATLAS	13	$WZ \to \ell' v \ell \ell$	ATLAS-CONF-2016-043	Mis-ID leptons	Mis-ID ℓ bgrd, trigger eff
CMS Snews	13	WW/WZ → ℓvqq	CMS-PAS-SMP-16-012	W+jets	W+jets, V-tag
CMS Snews	8	WW/WZ \rightarrow ℓvqq	arXiv:1703.06095	W+jets	W+jets
	8	WW/WZ → ℓvqq	STDM-2015-23	W+jets	Jet related
CMS	8	Wγjj	arXiv:1612.09256	QCD Wγ+jets, W+jets	W+jets, mis-ID j→e
CMS	8	Zγjj	arXiv:1702.03025	QCD Zγ+jets, Z+jets	QCD norm, Fake photon
ATLAS	8	Zγjj	STDM-2015-21	QCD Zy+jets, Z+jets	Jet related
ATLAS	8	W⁺(ℓv)W⁺(ℓv)jj	arXiv:1611.02428	WZjj	Jet related
CMS Snews	13	Wγγ/Ζγγ	arXiv:1704.00366	Jet/e $\rightarrow \gamma$ mis-id	Jet $\rightarrow \gamma$ mis-ID
ATLAS CMS	8 13	₩⁺(€ν)₩⁺(€ν)jj ₩γγ/Ζγγ	arXiv:1611.02428 arXiv:1704.00366	WZjj Jet/e → γ mis-id	Jet related Jet $\rightarrow \gamma$ mis-ID

Cross-Section Measurements

Evans

Diboson Cross-Sections

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsCombined

~All recent measurements are systematics limited

Generally good agreement between experiment and theory

- NNLO QCD improves agreement substantially in some cases
 - New NNLO calculations for WZ (arXiv:1604.08576) and Vγ (arXiv:1504.01330)
- But some features observed in some differential measurements

New Results: ATLAS yy (8 TeV)

Total and Differential (vs. 6 variables) cross-sections

- Fixed order QCD predictions at NLO and NNLO do not reproduce data well
- Parton-level calc w/ varying jet-mult up to NLO matched to parton shower does a much better job $\phi_{\eta}^* = \tan\left(\frac{\pi - \Delta \phi_{\gamma\gamma}}{2}\right) \sin \theta_{\eta}^*$ $a_{\tau} = \text{comp of } p_{\tau_{\gamma\gamma}} \text{ transverse to thrust}$

10²

10

 10^{3}

10⁴

 $a_{_{T}}\,\&\,\varphi^*$ probe infrared emmission effects

Dibosons & VBS - SM@LHC: May 2, 2017

 10^{-2}

 10^{-1}

arXiv:1704.03839 15

H. Evans

CMS years

CMS-PAS-SMP-16-017

16

First diboson result with full 2015-16 dataset (35.9 fb⁻¹)

Good agreement of differential cross-sections with NNLO predictions

Evans

Leptonic W/Z decays: WZ $\rightarrow \ell' \nu \ell \ell$, WW $\rightarrow e \nu \mu \nu$

Gauge Coupling Measurements

Fits to shape of m₇₇ distrib ==> limits on aTGCs Effective Lagrangian formalism Nucl Phys B 282 (1987) 253

h^y

h

h₄

h,Z

-0.2

Zyy, ZZy, ZZZ couplings zero at tree level in SM

Neutral aTGCs

ZZ (41,212v)

0.02

[-9.1e-03, 8.9e-03]

0.04

0.004

L = 35.9 fb⁻¹, 1s = 13 Te CMS Pr പ്പം 0.004 0.002 -0.002 -0.004 -0.002 0.002 0.004

0.2

Ζγ(ΙΙγ,ννγ)

0.4

[-3.1e-05, 3.0e-05]

[-3.9e-06, 4.5e-06]

0.6

aTGC Limits @95% C.L.

Zγ(Ilγ)

Ζγ(ννγ)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMPaTGC

5.0 fb

19.5 fb

19.6 fb⁻¹

7 TeV

8 TeV

.8 TeV

0.8 x10⁻¹(h_a)

x10⁻³(h)

-0.02

0

7 TeV

0.06

9.6 fb

aTGC Limits @95% C.L.

Charged aTGC: $WV \rightarrow \ell v q q$

New semi-leptonic WW/WZ analyses use merged jets

More sensitivity to aTGCs in merged jets despite lower EW cross-section significance

H. Evans

 $WV \rightarrow \ell \nu i i$

[-0.050, 0.066]

[-0.055,0.073]

Observed

[-0.033, 0.036]

[-0.044, 0.048]

CMS-PAS-SMP-16-012

Charged aTGC: Wjj

New W $\rightarrow ev/\mu v + 2$ forward jets in many fiducial regions with varying EW contrib.

- ATGCs probed using $M_{ii} > 1$ TeV Signal Region (+ $p_T^{j1} > 600$ GeV)

 λ_{v} limits competitive with those from WW production

Fiducial region

	$\Lambda =$	4 TeV	$\Lambda =$	= ∞
	Expected	Observed	Expected	Observed
Δg_1^Z	[-0.39, 0.35]	[-0.32, 0.28]	[-0.16, 0.15]	[-0.13, 0.12]
$\Delta \kappa_Z$	[-0.38, 0.51]	[-0.29, 0.42]	[-0.19, 0.19]	[-0.15, 0.16]
λ_V	[-0.16, 0.12]	$\left[-0.13, 0.090 ight]$	$\left[-0.064, 0.054 ight]$	$\left[-0.053, 0.042 ight]$
$\tilde{\kappa}_Z$	[-1.7, 1.8]	[-1.4, 1.4]	[-0.70, 0.70]	[-0.56, 0.56]
$\tilde{\lambda}_V$	[-0.13, 0.15]	[-0.10, 0.12]	[-0.058, 0.057]	[-0.047, 0.046]

Dibosons & VBS - SM@LHC: May 2, 2017

7ہے ATLAS 0.2 \s = 8 TeV, 20.2 fb⁻¹ Λ = 4 TeV, 95% C.L. 0. * SM -0.1 ---- Expected Observed -0.2 0.4 -0.4 -0.2 0 0.2 Δg_{1}^{Z} 0.3ج ATLAS s = 8 TeV, 20.2 fb⁻¹ 0.2 Λ = 4 TeV, 95% C.L. 0.1 * SM 0 -0. Expected -0.2 Observed -0.3 -0.4 -0.2 0.2 0.4 0 0.6 $\Delta \kappa_{Z}$

Ш H. Evans

arXiv:1703.04362 21

Poweg unty bedue

CMS WV semileptonic 13 TeV results (2.3 fb⁻¹) nearly competitive with 8 TeV (20 fb⁻¹)

WWy Couplings

Fit Value	LEP	Channel	Limits	∫Ldt	√s
		Wγ	[-4.1e-01, 4.6e-01]	4.6 fb ⁻¹	7 TeV
		Wγ	[-3.8e-01, 2.9e-01]	5.0 fb ⁻¹	7 TeV
	H	ww	[-1.2e-01, 1.7e-01]	20.3 fb ⁻¹	8 TeV
		ww	[-2.1e-01, 2.2e-01]	4.9 fb ⁻¹	7 TeV
	⊢ •−−1	ww	[-1.3e-01, 9.5e-02]	19.4 fb ⁻¹	8 TeV
	H	wv	[-2.1e-01, 2.2e-01]	4.6 fb ⁻¹	7 TeV
		WV	[-1.1e-01, 1.4e-01]	5.0 fb ⁻¹	7 TeV
	H	WV	[-4.4e-02, 6.3e-02]	19 fb ⁻¹	8 TeV
		WV	[-6.1e-02, 6.4e-02]	20.2 fb ⁻¹	8 TeV
		D0 Comb.	[-1.6e-01, 2.5e-01]	8.6 fb ⁻¹	1.96 TeV
	⊢ •−1	LEP Comb.	[-9.9e-02, 6.6e-02]	0.7 fb ⁻¹	0.20 TeV
	H	Wγ	[-6.5e-02, 6.1e-02]	4.6 fb ⁻¹	7 TeV
	H	Wγ	[-5.0e-02, 3.7e-02]	5.0 fb ⁻¹	7 TeV
	н	ww	[-1.9e-02, 1.9e-02]	20.3 fb ⁻¹	8 TeV
	H	ww	[-4.8e-02, 4.8e-02]	4.9 fb ⁻¹	7 TeV
	H+I	ww	[-2.4e-02, 2.4e-02]	19.4 fb ⁻¹	8 TeV
	H	WV	[-3.9e-02, 4.0e-02]	4.6 fb ⁻¹	7 TeV
_	н	wv	[-3.8e-02, 3.0e-02]	5.0 fb ⁻¹	7 TeV
	н	WV	[-1.1e-02, 1.1e-02]	19 fb ⁻¹	8 TeV
	н	WV	[-1.3e-02, 1.3e-02]	20.2 fb ⁻¹	8 TeV
	Heri	D0 Comb.	[-3.6e-02, 4.4e-02]	8.6 fb ⁻¹	1.96 TeV
1		LEP Comb.	[-5.9e-02, 1.7e-02]	0.7 fb ⁻¹	0.20 TeV
-					
	Fit Value	Fit Value Upp	Fit Value Up Channel WY WY WW WW WW WW WW WW WW WW WW WW H WV H WY H WW H WW H WW H WW H WW H WW H WV H WC H WC	Fit Value Channel Limits W7 [4.1e-01, 4.6e-01] W7 W8 [-1.2e-01, 1.7e-01] WW WW [-1.2e-01, 1.7e-01] WW [-1.2e-01, 2.2e-01] WW [-1.2e-01, 2.2e-01] WW [-1.2e-01, 2.2e-01] WW [-1.1e-01, 1.4e-01] WW [-1.1e-01, 1.4e-01] WW [-1.1e-01, 1.4e-01] WW [-1.1e-01, 1.4e-01] H WV [-1.1e-01, 1.4e-01] H WY [-1.1e-01, 1.4e-01] H WY [-1.1e-01, 1.4e-01] H WY [-1.1e-02, 6.4e-02] H WY [-1.1e-02, 1.9e-02] H WW [-1.9e-02, 1.9e-02] H	Fit Value Latt Wγ [4.1eo1], 46e-01] 5.6 fb ⁻¹ Wγ [4.1eo1], 46e-01] 5.0 fb ⁻¹ WW [-1.2eo1], 17e-01] 20.3 fb ⁻¹ WW [-2.1eo1], 22e-01] 4.6 fb ⁻¹ WW [-1.2eo1], 17e-01] 20.3 fb ⁻¹ WW [-2.1eo1], 22e-01] 4.6 fb ⁻¹ WW [-1.2eo1], 22e-01] 4.6 fb ⁻¹ WW [-1.2eo1], 22e-01] 4.6 fb ⁻¹ WV [-1.1eo1], 14e-01] 5.0 fb ⁻¹ WV [-1.1eo1], 14e-01] 5.0 fb ⁻¹ WV [-1.4eo1] 5.0 fb ⁻¹ WV [-1.4eo1] 5.0 fb ⁻¹ WV [-1.4eo1] 5.0 fb ⁻¹ H WV [-1.6eo1] 2.6 fb ⁻¹ H WY [-5.6eo2] 3.6 fb ⁻¹ H WW [-1.3eo2] 2.0 fb ⁻¹ H WW [-3.8eo2] 2.9 fb ⁻¹ H WW [-3.8eo2] 2.9 fb ⁻¹ H WV [-1.9eo2] 1.9 fb ⁻¹

WWZ Couplings

aQGC: New Diboson Results

\sim New W/Zy and W[±]W[±] results all with EW cross-section significances near or above 3σ

- Note that aQGC fits use more more restrictive phase space with higher S/B but lower signal significance

8 TeV	AT	LAS	CMS		
Channel	EW Signal Significance	aQGC Extraction	EW Signal Significance	aQGC Extraction	
Zγjj	2.0σ (1.8σ exp) STDM-2015-21	N events in aQGC region	3.0σ (2.0σ exp) arXiv:1702.03025	Fit to $M_{z_{\gamma}}$ distribution	
Wγjj			2.7σ (1.5σ exp) arXiv:1612.09256	Fit to p_{τ}^{w} distribution	
W⁺W⁺jj	3.6σ (2.8σ exp) arXiv:1611.02428	N events in aQGC region	1.9σ (2.9σ exp) PRL 114, 051801 (2015)	Fit to m_{ee} distribution	

Best Zyjj limits from v channel

• Improved by 10-30% with inclusion of ℓ modes

aQGC: New Triboson Results

New CMS W(ℓv) $\gamma \gamma$ / Z($\ell \ell$) $\gamma \gamma$ production measurements at 8 TeV

Signal Significances: 2.6σ (W) / 5.9σ (Z)

Channel	Measured fiducial cross section
$W\gamma\gamma ightarrow e^{\pm} u\gamma\gamma$	$4.2\pm2.0(\mathrm{stat})\pm1.6(\mathrm{syst})\pm0.1(\mathrm{lumi})\mathrm{fb}$
$W\gamma\gamma ightarrow\mu^{\pm} u\gamma\gamma$	$6.0\pm1.8(\mathrm{stat})\pm2.3(\mathrm{syst})\pm0.2(\mathrm{lumi})\mathrm{fb}$
$W\gamma\gamma ightarrow\ell^\pm u\gamma\gamma$	$4.9\pm1.4(\mathrm{stat})\pm1.6(\mathrm{syst})\pm0.1(\mathrm{lumi})\mathrm{fb}$
$Z\gamma\gamma ightarrow e^+e^-\gamma\gamma$	$12.5\pm2.1(\mathrm{stat})\pm2.1(\mathrm{syst})\pm0.3(\mathrm{lumi})\mathrm{fb}$
$Z\gamma\gamma ightarrow\mu^+\mu^-\gamma\gamma$	$12.8\pm1.8(\text{stat})\pm1.7(\text{syst})\pm0.3(\text{lumi})\text{fb}$
$Z\gamma\gamma ightarrow\ell^+\ell^-\gamma\gamma$	$12.7\pm1.4(\text{stat})\pm1.8(\text{syst})\pm0.3(\text{lumi})\text{fb}$
Channel	Prediction
$W\gamma\gamma ightarrow\ell^\pm u\gamma\gamma$	$4.8\pm0.5\mathrm{fb}$
$Z\gamma\gamma ightarrow\ell^+\ell^-\gamma\gamma$	$13.0\pm1.5\mathrm{fb}$

- Fiducial cross-sections
 consistent w/ NLO theory
- aQGC limits (esp. f_{T0})
 improved wrt previous 8 TeV results

$W\gamma\gamma$	Expected (TeV $^{-4}$)	Observed (TeV $^{-4}$)
$f_{\mathrm{M,2}}/\Lambda^4$	[-549,531]	[-701,683]
$f_{{ m M},3}/\Lambda^4$	[-916,950]	[-1170, 1220]
$f_{\mathrm{T,0}}/\Lambda^4$	[-26.5, 27.0]	[-33.5, 34.0]
$f_{\mathrm{T,1}}/\Lambda^4$	[-34.5, 34.8]	[-44.3, 44.8]
$f_{\mathrm{T,2}}/\Lambda^4$	[-74.6,73.7]	[-93.8,93.2]

aQGC: Summaries

f:transverse

New 8 TeV W/Zγ jj results ==> significantly improved limits

Eagerly awaiting first 13 TeV results

$\mathbf{f}_{_{\mathrm{Mi}}}$: mixed longitudinal & transverse

			T:		
pril 2017	CMS ATLAS	Channel	Limits	∫ <i>L</i> dt	√s
$f_{T,0} / \Lambda^4$		Wγγ	[-3.4e+01, 3.4e+01]	19.4 fb ⁻¹	8 TeV
		Wγγ	[-1.6e+01, 1.6e+01]	20.3 fb ⁻¹	8 TeV
	HH	Ζγγ	[-1.6e+01, 1.9e+01]	20.3 fb ⁻¹	8 TeV
	······	WVγ	[-2.5e+01, 2.4e+01]	19.3 fb ⁻¹	8 TeV
		Zγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢ ⊣	Zγ	[-3.4e+00, 2.9e+00]	20.3 fb ⁻¹	8 TeV
	L + +	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV
	+4	ss WW	[-4.2e+00, 4.6e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,1}/\Lambda^4$		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV
	⊢ −−1	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
	1-1	ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV
$f_{T,2}/\Lambda^4$	(Ζγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV
	⊢ − − − −	Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV
	+1	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV
f _{T,5} /Λ ⁴	H	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV
		Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,6} / \Lambda^4$		Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV
f _{T,7} /Λ ⁴	⊢	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV
$f_{T,8} / \Lambda^4$	H	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV
	н	Zγ	[-1.8e+00, 1.8e+00]	20.3 fb ⁻¹	8 TeV
f _{T,9} /Λ ⁴	⊢−−− 1	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV
	· ⊢ – – – – – – – – – – – – – – – – – –	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV
		Ζγ	[-3.9e+00, 3.9e+00]	20.3 fb ⁻¹	8 TeV
					I
-50	0	50	10)0	
		aC	GC Limits @9	5% C.L.	[TeV

Ш Н. Evans

Form Factors

Inclusion of Form Factors dilutes limits

- e.g. aTGC limits from ATLAS
 8 TeV WV → ℓvqq increase by
 up to 10% for Λ_{FF} = ∞ → 5 TeV
- However, many limits without FFs fall in the unitary unsafe region (at 8 TeV)

Future Prospects

Upgrade Plans

Drivers of the Upgrades

- Radiation: tracking systems, some muon (ATLAS) & calorimeter (CMS) detectors, electronics
- Event Complexity (pileup): trigger & DAQ systems, electronics
- High-Level Goals of the Upgrades (Phase-1 & HL-LHC)
 - Maintain performance of object (e, μ, τ, jet, E_t^{miss},...) identification/reconstruction at Run-1 levels in the challenging HL-LHC environment
 - ==> very stringent requirements on detectors, electronics, trigger, readout

Evans

Diboson Projections

Important Considerations for Diboson/Gauge Coupling Analyses

- Lepton triggering: complete overhaul of trigger systems
- − Pileup rejection for forward jets: extend tracking $|\eta| = 2.5 \rightarrow 4.0$

Both ATLAS & CMS have made diboson projections

Input to HL-LHC detector design/optimization

Diboson measurements provide a very sensitive test of the SM

- Higher order QCD calculations: inclusive & differential cross-sections
- EW symmetry breaking mechanism: TGCs and QGCs

NNLO QCD calculations generally improving agreement with data over NLO

But some areas where problems still seen

Sensitivity to aTGCs and aQGCs improving significantly

- Use of boosted topologies
- Addition of 13 TeV data

Prospects for diboson physics at HL-LHC are bright !

$$\begin{split} g_1^Z &= 1 + c_W \frac{m_Z^2}{2\Lambda^2} \\ \kappa_\gamma &= 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2} \\ \kappa_Z &= 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2} \\ \lambda_\gamma &= \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2} \\ g_4^V &= g_5^V &= 0 \\ \tilde{\kappa}_\gamma &= c_{\tilde{W}} \frac{m_W^2}{2\Lambda^2} \\ \tilde{\kappa}_Z &= -c_{\tilde{W}} \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2} \\ \tilde{\lambda}_\gamma &= \tilde{\lambda}_Z = c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2} \\ \tilde{\lambda}_\gamma &= \tilde{\lambda}_Z = c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2} \\ \end{split}$$

ATLAS γγ – 8 TeV

Two methods used to distinguish $\gamma\gamma$ signal from fake- γ bgrd

- 2D fit to isolation of the two γ 's
- matrix method for events that pass/fail isolation requirements
 ==> consistent results

$\mathsf{CMS}\ \mathsf{ZZ} \xrightarrow{} 4\ell - 13\ \mathsf{TeV}$

Tiny background levels in this analysis

- mainly for jet $\rightarrow \ell$ mis-ID
- measured using a sample of
 Z+ℓ_{candidate} events in data

Decay	Expected	Background	Total	Observed
channel	$N_{4\ell}$		expected	
4μ	$265.5 \pm 1.3 \pm 8.4$	$5.2\pm0.8\pm1.5$	$270.7 \pm 1.5 \pm 8.6$	290
2e2µ	$425.4 \pm 1.6 \pm 17.5$	$19.0\pm1.8\pm3.4$	$444.4 \pm 2.4 \pm 18.1$	465
4e	$165.3 \pm 1.0 \pm 10.9$	$11.8 \pm 1.5 \pm 2.2$	$177.2 \pm 1.8 \pm 11.4$	175
Total	$856.2 \pm 2.3 \pm 33.3$	$36.0 \pm 2.5 \pm 6.4$	$892.2 \pm 3.4 \pm 34.4$	930

Fiducial Cross-Section definition

- mainly for jet → ℓ mis-ID

Fiducial selection requirement	Cut value
p_{T}^{ℓ}	$> 25 { m GeV}$
$ \eta_\ell $	< 2.5
$m_{e\mu}$	$> 10 { m GeV}$
Number of jets with $p_T > 25(30)$ GeV, $ \eta < 2.5(4.5)$	0
$E_{ m T, \ Rel}^{ m miss}$	$> 15 { m GeV}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 { m GeV}$

nNNLO prediction

$pp \rightarrow WW$ sub-process	Order of	$\sigma_{WW}^{\rm tot}$	A	$\sigma_{WW \to e\mu}^{\text{fid}}$
	α_{s}	[bb]	[%]	[dī]
$q\bar{q}$ [9,13]	$\mathcal{O}(\alpha_{\rm s}^2)$	111.1 ± 2.8	16.20 ± 0.13	422 + 12 - 11
gg (non-resonant) [33]	${\cal O}(lpha_{ m s}^3)$	$6.82 \substack{+ & 0.42 \\ - & 0.55 \end{bmatrix}$	$28.1 + 2.7 \\ - 2.3$	44.9 ± 7.2
$gg \to H \to WW$ [67][30]	$\mathcal{O}(\alpha_{\rm s}^5)$ tot. / $\mathcal{O}(\alpha_{\rm s}^3)$ fid.	$10.45 \stackrel{+}{_{-}} \stackrel{0.61}{_{-}}$	4.5 ± 0.6	11.0 ± 2.1
$q\bar{q} + gg$ (non-resonant) +	nNNLO+H	$128.4 \ \begin{array}{c} + \ 3.5 \\ - \ 3.8 \end{array}$	$15.87^{+0.17}_{-0.14}$	478 ± 17
$gg \to H \to WW$				

A = (16.4±0.9)% also calculated using MC

- > POWHEG-BOX+PYTHIA for qq and $gg \rightarrow H \rightarrow WW$
- > SHERPA for non-res gg

13 TeV / 8 TeV x-sect ratio

ATLAS WV → ℓvqq – 8 TeV

CMS WV \rightarrow ℓ vqq - 8,13 TeV

W+jets, tt, diboson normalizations from fits to m, distributions

Fits for aTGCs from p_T (8 TeV) & m_{wv} (13 TeV) distributions

8 TeV - top & diboson shapes from MC (diboson adjusted for aTGCs)

13 TeV

W+jets shapes from MC corrected using sideband data transfer func.

				aTGC	expected limit	observed limit
			і.	$\frac{c_{WWW}}{\Lambda^2}$ (TeV ⁻²)	[-8.73 , 8.70]	[-9.46 , 9.42]
			EF	$\frac{\tilde{c}_W}{\Lambda^2}$ (TeV ⁻²)	[-11.7 <i>,</i> 11.1]	[-12.6 , 12.0]
Parameter	Expected Limits	Observed Limits	d	$\frac{c_B}{\Lambda^2}$ (TeV ⁻²)	[-54.9 , 53.3]	[-56.1,55.4]
λ_Z	[-0.014, 0.013]	[-0.011, 0.011]	n.	λ	[-0.036 , 0.036]	[-0.039 , 0.039]
$\Delta\kappa_\gamma$	[-0.068, 0.082]	[-0.044, 0.063]	ert	Δg_1^Z	[-0.066 , 0.064]	[-0.067 , 0.066]
Δg_1^Z	[-0.018, 0.028]	[-0.0087, 0.024]	bed	$\Delta \kappa_Z$	[-0.038 , 0.040]	[-0.040 , 0.041]
H. Evans	arXiv:1703.06095	Dibosons & V	VBS - SM@l	HC: May 2, 2017	SMP-16-012	37

ATLAS Wjj – 7,8 TeV

Fiducial Cross-Section measurements for QCD & EW components

- uses M_{ij} as discriminating distribution
- shape of QCD M_{jj} distrib from control region (high lepton centrality)

Region name	Requirements				
Preselection	Lepton $p_{\rm T} > 25 \text{ GeV}$ Lepton $ \eta < 2.5$ $E_{\rm T}^{\rm miss} > 20 \text{ GeV}$ $m_{\rm T} > 40 \text{ GeV}$ $p_{\rm T}^{j_1} > 80 \text{ GeV}$ $p_{\rm T}^{j_2} > 60 \text{ GeV}$ Jet $ y < 4.4$ $M_{jj} > 500 \text{ GeV}$ $\Delta y(j_1, j_2) > 2$ $\Delta R(i, \ell) > 0.3$	200 ×10 ³ <i>ATLAS</i> 180 Wij inclusive region 160 Viji inclusive region 140 0 100 - 80 - 60 -	\s = 8 TeV, 20.2 fb ¹ Data E W Wjj QCD Wjj Top quarks Multijets Zjj and dibosons ∭ Uncertainty	Wij signal region	vs = 8 TeV, 20.2 fb ¹ Data EW Wij QCD Wjj Top quarks Multijets Zjj and dibosons Wincertainty
Fiducial and differential measurements Signal region Forward-lepton control region Central-jet validation region Differential measurements only Inclusive regions	$N_{lepton}^{cen} = 1, N_{jets}^{cen} = 0$ $N_{lepton}^{cen} = 0, N_{jets}^{cen} = 0$ $N_{lepton}^{cen} = 1, N_{jets}^{cen} \ge 1$ $M_{jj} > 0.5 \text{ TeV}, 1 \text{ TeV}, 1.5 \text{ TeV}, \text{ or } 2 \text{ TeV}$	- 40 - Signal 40 -	Control	10 ² 10 ³ 1.5 0.5 0.5 1000 1500 2000 2500	+ + + + + + + + + + + + + + + + + + +
Forward-lepton/central-jet region High-mass signal region Anomalous coupling measurements only High- q^2 region	$N_{lepton}^{cen} = 0, N_{jets}^{cen} \ge 1$ $M_{jj} > 1 \text{ TeV}, N_{lepton}^{cen} = 1, N_{jets}^{cen} = 0$ $M_{jj} > 1 \text{ TeV}, N_{lepton}^{cen} = 1, N_{jets}^{cen} = 0, p_{T}^{j_{1}} > 600 \text{ GeV}$	- -	Lepton centrality		5000 5000 4000 4000 Mj [Ge ¹

0.6

 $\sigma \cdot B$ normalized to SM prediction

Total & Differential Cross-Sections

ATLAS Wjj – 7,8 TeV (cont)

ATLAS Z($\ell \ell / \nu \nu$)γjj – 8 TeV

Zγ Centrality

40

ATLAS-STDM-2015-21

Fiducial Cross-Section measurement in $Z \rightarrow \ell \ell$ channel

CMS Z(ℓℓ)γjj – 8 TeV

Fiducial Cross-Section measurement in $Z \rightarrow \ell \ell$ channel

Distinguish EWK from QCD component using fit to M_{ii} distrib

$$\begin{split} &\sigma_{\rm \scriptscriptstyle EW}({\it meas}){=}1.86^{+0.09}_{-0.75}({\it stat})^{+0.34}_{-0.26}({\it syst}){\pm}0.05({\it lumi})~{\it fb}\\ &\sigma_{\rm \scriptscriptstyle EW}({\it MADGRAPH}){=}1.27{\pm}0.11({\it scale}){\pm}0.05({\it PDF})~{\it fb}~({\it LO}) \end{split}$$

	mon selection	Com	
) GeV, $ \eta^{j1,j2} < 4.7$	$p_{T}^{j1,j2} > 3$	
EW/K Significance) GeV, $ \eta^{\ell 1, \ell 2} < 2.4$	$p_{\mathrm{T}}^{\ell ilde{1},\ell 2} > 2$	
EVVK Significance	$ \gamma < 1.4442$	$ \eta angle$	
$3 0 \sigma (obs) / 2 0 \sigma$	$M_{ m jj} > 150{ m GeV}$		
3.00 (003) / 2.00	$70 < M_{\ell\ell} < 110{ m GeV}$		
aQGC search	Fiducial cross section	EW signal measurement	
$p_{\rm T}^{\gamma} > 60 { m GeV}$	$p_{\rm T}^{\gamma} > 20 { m GeV}$	$p_{\rm T}^{\gamma} > 25 { m GeV}$	
$ \Delta \eta_{ij} > 2.5$	$ \Delta \eta_{\rm ii} > 2.5$	$ \Delta \eta_{\rm ii} > 1.6$	
$> 0.3, \Delta R_{ij,\gamma j,\gamma \ell} > 0.5$	$\Delta R_{ij_{\ell}\gamma l_{\ell}\gamma \ell_{\ell} j\ell} > 0.4$	$\Delta R_{i\ell} > 0.3$, $\Delta R_{ii\gamma i\gamma\ell} > 0.5$	
$M_{\rm ii} > 400{ m GeV}$	$M_{\rm ji} > 400 { m GeV}$	$ y_{Z\gamma} - (y_{j1} + y_{j2})/2 < 1.2$	
"	"	$\Delta \phi_{Z\gamma,ii} > 2.0$ radians	
		$M_{\rm ii} > 400 {\rm GeV}$ with two divided regions	
		$400 < M_{ii} < 800 \text{GeV}$ and $M_{ii} > 800 \text{GeV}$	

Evans

CMS $W\gamma\gamma/Z\gamma\gamma - 8$ TeV

Fiducial Cross-Section measurement

- Fake photon background (mainly from jets) estimated using 2D distribution of isolation of two photons – tight vs loose selections
 - > templates from MC and data control samples

Signal Significances: 2.6σ (Wγγ) / 5.9σ (Zγγ) using profile likelihood (data & pred bgrd) for each channel and for both/one photon(s) in barrel

H. Evans