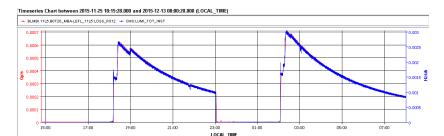
BFPP losses during the p-Pb run vs S12 thresholds

A. Lechner with input from J. Jowett


44th BLM Thresholds WG Meeting Sept $20^{\rm th}$, 2016

Sept 20 $^{
m th}$, 2016 $\,$ 1

Introduction

- During the 2015 Pb-Pb run, had to increase BLM threshold above MB-LE interconnect left of IR5
 - BFPP losses in MB.B11L5 (bumps not strong enough to move losses into LE)
 - Thresholds for this BLM tailored to UFOs (THRI.ARDS_MBMB)
 - Increasing the MF from 0.499 to 1.0 mitigated the problem
- 2016 p-Pb run:
 - BFPP cross section for p-Pb much smaller compared to Pb-Pb
 - But the luminosity in IR1/5 will be higher and we operate with lower S12 thresholds (for certain BLM families - including the one above)
 - $\circ\,$ No bumps will be applied, BFPP losses expected to remain in MB.B11 next to IR1/5

Expected signal

- Experience from 2015:
 - \circ 700 μ Gy/s for a BFPP Pb ion beam with \sim 70 W (3×10²⁷ cm⁻²s⁻¹, 6.37 ZTeV, cs=276 b)
- Expectation for 2016 (scaled from 2015 based on beam power)[†]:
 - \circ 36 μ Gy/s for a BFPP Pb ion beam with \sim 3.6 W (1 \times 10³⁰ cm⁻²s⁻¹, 6.5 ZTeV, cs=42 mb)

[†]Will also depend on the actual loss location of the BFPP ions.

Threshold evolution MB-MB BLMs S12

Period	MF	UFO AdHoc	THR RS12 (@6.5 TeV)
2015			
startup – 15/10	0.333 (std)	-	$270\mu\mathrm{Gy/s}$
16/10 - end	0.499 (UFO)	-	$405\mu\mathrm{Gy/s}$
2016			
startup – 11/08	0.333 (std)	3× (RS01-05)	$270\mu\mathrm{Gy/s}$
12/08 – now	0.100 (S12)	-	$81\mu{ m Gy/s}$

- → BFPP-induced signal should remain below 50% of dump threshold but risks to produce unnecessary warnings (i.e. above 30%) if the anticipated luminosity is reached.
- → Should increase MF for this monitor