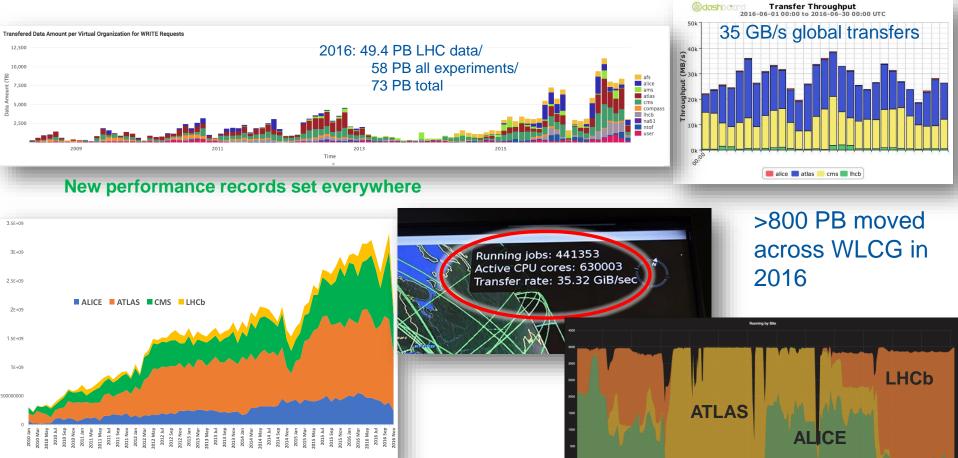
LHC Future Challenges

Ian Bird CWP Workshop San Diego, 23rd January 2017

WLCG Collaboration

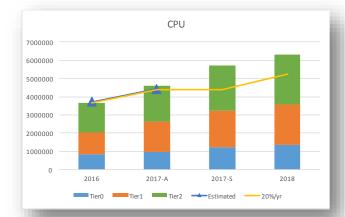

Running jobs: 441353 Active CPU cores: 630003 Transfer rate: 35.32 GiB/sec January 2017:

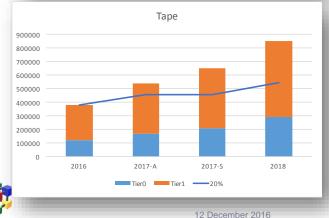
- 63 MoU's
- 167 sites; 42 countries

Cores >500 k
Disk 350 PB
Tape >400 PB

ober 2016

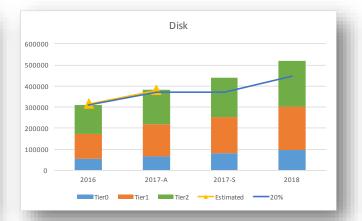
WLCG in Run 2 – 2016


Run2: Increased computing needs


LHC performance is above expectations: All factors driving computing have increased above anticipated levels

	2016 exp	2016	2017 exp	2017	2018
Live M sec	5	~7.4	5.5	7.8	7.8
Inst. Lumi (x10 ³⁴)	1.0	1.0 → 1.3	1.0	1.4	1.4
<pile-up></pile-up>	21	21 → 27	25	33	33

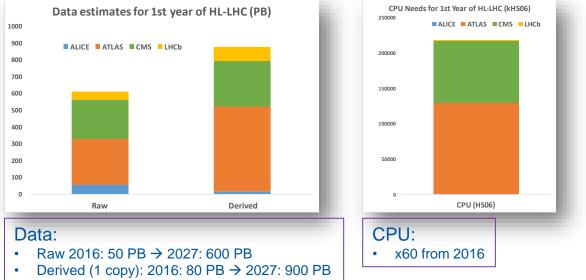
- □ For 2016, the available resources were sufficient
 - More tapes at CERN have been bought
- Re-analysis for 2017,18
 - Expectations are increased requirement above previous estimates of ~20%


Re-assessment of needs

CERN

WLCG

Estimated: Estimates made in 2014 for Run 2 up to 2017 – *largest uncertainty is LHC live time*


20%: Growth of 20%/yr starting in 2016 ("flat budget")

Outlook

- Ongoing and continual evolution
 - Computing models & software performance in the experiments
 - Infrastructure use of clouds, HPC, volunteer computing etc., etc.
- □ Anticipate:
 - Run 2 and Run 3 will be manageable with an ~evolutionary approach
 - But making use of technology advances where useful
 - ALICE Upgrade TDR done, LHCb this year
 - HL-LHC will require more revolutionary thinking
- □ NB: We are starting from a working system

Estimates of resource needs for HL-LHC

Technology at ~20%/year will bring x6-10 in 10-11 years

- Simple model based on today's computing models, but with expected HL-LHC operating parameters (pile-up, trigger rates, etc.)
- At least x10 above what is realistic to expect from technology with reasonably constant cost

ERN

Cost Drivers

Detector design, trigger rates, etc.

Experiment parameters

Optimization of reconstruction, simulation, etc.

Experiment Algorithms

Software Performance

Architecture, memory, etc. → HEP SW Foundation roadmap Infrastructure

New grid/cloud models; optimisation of CPU/disk/network

Challenges – 1

- Technical challenges:
 - Optimization of the physics output vs cost
 - Software, algorithms, computing models, distributed infrastructure → and implications (e.g. on networks needed)
 - Integration of *all* available resources: HPC, Cloud, opportunistic, traditional, etc.
 - Technology evolution will it be as much as we need?
 - Opportunity to re-think the computing models may be very different than today
- □ Sociological challenges:
 - Remove the "online-offline" boundary there is a computing challenge from detector to physics
 - Must ensure that Computing and Software careers are seen as Physics careers essential to build and maintain the skills we need
 - This requires change in the collaborations & in the Universities
 - Consolidation of resources (e.g. storage) must not be interpreted as removing the need for a global community and global contributions
 - Must find a path to reducing cost while maintaining the most broad and open contributing community

Challenges – 2

- Funding outlook is still to maintain a flat budget for computing even for HL-LHC
- □ There are other funding-related challenges:
 - What are the boundary conditions? e.g.:
 - Can we imagine joint procurements of commercial resources to achieve economy of scale? What are the boundaries of that?
 - What will the national infrastructures look like? Will small university clusters be moved to (non-local) clouds?
 - Implications for synergy (opportunistic resources) versus improved cost and elasticity?
- Building an affordable model for HL-LHC computing will require all of these areas to be addressed

Process for HL-LHC

- □ Agreement with LHCC
 - TDR for HL-LHC Computing to be produced in 2020
 - 2017: provide a "CDR" or vision/roadmap towards the TDR
 - Hope is that this CWP can provide a lot of the input for this roadmap
 - And that community working groups will address the work that is required to produce the eventual TDR
- The LHCC (LHC Scientific review), SPC (CERN Science Policy Committee – member states), and RRB (funding agencies) are all wanting to see progress towards understanding the costs of computing for HL-LHC

