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‘Outline ‘

LHC experiments

LHC upgrades

Upgrades for the LHC experiments

Selected topics in HL-LHC physics opportunities
Connections with the CWP process

Note: These slides draw heavily from the ECFA HL-LHC
Workshop held in October 2016. Please see

https://indico.cern.ch/event/524795

for the details and much more additional information

Thanks also to Andrea Dainese, Vladimir Gligorov and Dan
Tovey for input on the slides preparation


https://indico.cern.ch/event/524795/timetable/
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‘ATLAS & CMS Experiments

Two “general purpose” detectors that
' analyze pp and HlI collisions at the LHC

Key physics topics

e Precision SM & Higgs measurements
e Search for new particles/phenomena
at TeV scale (more Higgses, SUSY,
DM, W', Z', ED, FCNC, top partner, ...)
== e Strong dynamics of quarks & gluons in
/ hot, dense nuclear matter (QGP)

Selected highlights

e Higgs boson discovery!

e Large fraction of highly
asymmetric jet pairs 2>
First direct observation of
jet quenching effect
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ILHCb Experiment

General purpose detector optimized to
measure b-hadron pairs produced in the
forward region from pp or HI collisions at
the LHC

Core program is to measure parameters
... of CP violation in an effort to help

| explain the observed matter/anti-matter
asymmetry of the Universe

Some physics topics include

e Measuring B,~>uu decay

e Angular analysis of muons in B,2>K* yy decay (FCNC)

e Measuring CP violating phase in B,2>J/¥Y ¢ decay and angle y
e Radiative B decays (FCNC)

e Hadron spectroscopy and search for exotic states
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General purpose detector optimized for

Vo ;” the high-multiplicity environment of Hl
A= collisions at the LHC. Complementary to

other LHC experiments due to low-p;
threshold and excellent PID capabilities

Core program is to measure observables that characterize the
QCD phase diagram. Comparisons of p-Pb and Pb-Pb data can

be used to disentangle cold-matter ISR/FSR

that are intrinsic to the QCD medium o

effects from those
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) Luminosity
? LHC

Vs=13 TeV Vs=14 TeV New IR layout
Bunch spacing 25 ns LHC injector upgrade Crab cavity
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Chas, |

&2 [HL-LHC Challenge: Pile-up |

e Problem: Large number of pp ATLAS

HL-LHC tt ev n ATLAS ITK

Interactions per bunch crossing

o Adds extra energy to
calorimeter measurements

o Increases the amount of data
to be read out in each BX

o Increases combinatorial
complexity and rate of fake
tracks - computing resources

e Mitigation

o High granularity detectors and
fast electrons to identify PV

o Precision timing for PV-to- o/
track/cluster association o

o Better algorithms, concurrency % 7+ 2 s 4 s e

Luminosity [10* cm?2 5]
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S ‘HL LHC Challenge: Radiation |

EXPERIMENT

e Problem: Radiation damage to detector elements and
electronics from high radiation dose during LHC operation
o Degrades signals from systems
o Limits lifetime of detectors
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-> requires new trackers, endcap calorimeters, forward muon
systems and replacement of most of the detector readout systems
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&) |HL-LHC: ATLAS Upgrade] £

EXPERIMENT EXPERIMENT

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter U pg rad e
all front-end
~ electronics

New all-silicon
Inner Tracker

igher rate,
longer latency

}rigger system

Possibly forward
| muon tagger and
New inner muon gy timing detector
ba rrel trigger Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker
chambers

|
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|HL-LHC: CMS Upgrade|

Trigger/HLT/DAQ
* Track information at L1-Trigger

* L1-Trigger: 12.5 us latency - output 750 kHz
* HLT output =7.5 kHz

Barrel EM calorimeter
» Replace FE/BE electronics
* Lower operating temperature (8°)

Muon systems
* Replace DT & CSC FE/BE
. electronics
» Complete RPC coverage in
region1.5<n<2.4
n tagging 2.4<n<3

* Rad. tolerant - high granu
* 3D capability

Replace Tracker
* Rad. tolerant - high granularity - significantly less material
* 40 MHz selective readout (Pt>2 GeV) in Outer Tracker for L1-Trigger
* Extend coverage to n=3.8



ILHCb Upgrades|

e Phase-1 (LS2) upgrade goal to collect 50 fb-! @ 2x103%4 cm=2 s
o Readout whole detector @ 40 MHz
o Software-only trigger!
o Real-time alignment, calibration and reconstruction
Requires new HLT farm many-core processors (e.g. GPUs,
CPU+FPGA hybrids) and new LAN system

RICH detectors Muon system
VErtex LOcator new photon detectors (SiPM) new off-detecor
new (silicon pixels) improve RICH1 optics electronics

Beyond LS2
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- 0 —
- TraCklng sy5tem 5 calorlmeters 2010 2015 ZdZO 2025 2030 2035
new (silicon strips, scintillating fibres) new readout electronics

Indicative of potential only
Phase-Ib and Il still in discussion phase



|Upgrades most relevant to HI |

e Designed to accommodate higher luminosity after LS2
o Pb-Pb instantaneous luminosity expected to increase x5

¢ ALICE (LS2)
> New inner tracker: precision and efficiency at low p;
» New pixel muon tracker: precise tracking and vertexing for u

» New TPC readout chambers, upgraded readout for other detectors and new
integrated Online-Offline: x100 faster readout (up to 50 kHz for Pb-Pb)

¢ ATLAS
» Additional pixel layer (LS1), then new tracker (LS3): tracking and b-tag
» Fast tracking trigger (LS2): high-multiplicity tracking
» Calorimeter and muon upgrades (LS2): electron, y, muon triggers

¢ CMS

» Upgrade of trigger and DAQ, L1 calorimeter trigger (LS1): enables L1 rejection
at 95%, e.g. (after LS2) from 50 kHz to <3 kHz (HLT input) %

» New pixel tracker (YETS16-17), then new tracker (LS3): tracking and b-tag
» Extension of forward muon system (LS2): muon acceptance
» Upgrade forward calorimeter (LS3): forward jets in HI

EEEEEEEEEE

¢ LHCD (LS2)
» Upgrade includes new vertexing and tracking detectors %



|HI Programme at HL-LHC

(Not exhaustive!)

Jets: characterization of energy loss mechanism both as a testing ground for
the multi-particle aspects of QCD and as a probe of the medium density
» Differential studies of jets, b-jets, di-jets, y/Z-jet at very high p; (focus of ATLAS and CMS)
» Flavour-dependent in-medium fragmentation functions (focus of ALICE)
Heavy flavour: characterization of mass dependence of energy loss, HQ in-
medium thermalization and hadronization, as a probe of the medium
transport properties
» Production and elliptic flow of several HF hadron species from 0 to high p; (ALL EXPs)

Quarkonium: precision study of quarkonium dissociation pattem and
regeneration, as probes of deconfinement and of the medium temperature
» Low-p; charmonia and elliptic flow (focus of ALICE, LHCb)
» Multi-differential studies of Y states (focus of ATLAS and CMS)
Low-mass di-leptons: thermal radiation ¥ (=2 [') to map temperature
during system evolution; modification of © meson spectral function as a
probe of the chiral symmetry restoration
» (Very) low-p; and low-mass di-electrons and di-muons (ALICE)



IHL-LHC Higgs Prospects: Couplings |

Not exhaustive!)

e Signal strength measurements e Higgs pair prociucuon
(sensitive to Higgs couplings) (access to H self-counlina)
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e Very low cross section
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wiss i R R a(pp — HH)RNL o nnLL = 33.45 fb (@ 13TeV)

H— Zy (ncl) 5 20—
:_'—-‘\ 200:_ ATLAS Preliminary Non-resonant prediction _:

e e N R R 7 il = . N Expected Limit (95% CL)

, : Lo - Vs=14TeV,L=3000 " pummm Expected + 1o .

P § 1801 Expected - 20 E
comb. 160 T —

H-— bb L HH — bbbb ) -
i i — ]

1 =

: 120_ alem MM\ ™SI J  EXPERIMENT
H—tt (VBF-like) & 7

) 100:

1 1 20F —:

O 0-2 0-4 - | I T — 1 - | - PRI S N IS ST S ;
AL/ -10 -5 0 5 10 15 SM20

l’l' u )"HHHI)‘HHH




‘HL—LHC Higgs Prospects: Rare Decays

. 210'°F ATLAS Simulation Preliminary
e H—ppu - measures coupling to second e
fermion generation g1 -
g 107 £ WWo pvpy
» ATLAS and CMS expect >7¢ significance 10° ATLAS
with 3000 fb!
» coupling measured to 5-10% b MR ST
- m,, [GeV]
» Tests loop structure of decay, compare 5
with H—ZZ H—yy _
» ~4¢ significance possible with 3000 b e TR A5
despite the challenging background o T
ATL-PHYS-PUB-2013-014 a%HHJf """"" HHH H”}H i +HH#+%
*H—J/yy s T
» SM expectation: BR(H—J/i p) = (2.9 £ 0.2) X 107° Sep R
ATLAS Run 1 limit: BR(H—J/y y)=1.5x 1073 mesone:
Expected limits at 95% CL (using multivariate analysis): m(u*;r:
BR(H—J/y y): (4471°_15) X 107 (
o(gg—H) x BR(H—J/y p): (3.1+0'9—1.3) fb 1005
ATL-PHYS-PUB-2015-043 60 80 100 120 140 160 180

m,,., (GeV)



‘HL-LHC Prospects: Flavor Physics

From: CMb- IUR-15-UZ
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‘Connections to CWP / Closing Remarks‘

e Each of the LHC experiments have a series of ambitious
upgrades to match the LHC upgrades
o The primary motivation for each of the upgrades is to
maximize physics performance
o Design choices are driven mainly by physics considerations

e Some things to consider for the CWP process

o Develop synergies between LHC experiments as much as
possible

o Each detector is a big camera — exploit developments in the
ML arena

o Include the mix of physics activities in the planning (e.g.
luminosity increase vs. energy increse)

o Visualization is an underdeveloped tool in our field for
research, outreach, education and professional training



