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Who am I?
• Former Condor Team staff @ UW-Madison 

Computer Sciences Dept. (‘99-’08) 
• Later at Syracuse University (‘09-’15) focused on 

distributed computing problems for the LIGO 
Scientific Collaboration, and fostering research 
computing capabilities and community at SU. 

• Now working for the LIGO Laboratory at Caltech 
(’15-), managing Advanced LIGO’s data analysis 
computing, and leading our optimization efforts.

2



LIGO:  
Laser Interferometer Gravitational-wave Observatory
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What Gravitational Waves Can  
Tell Us About the Universe  

 (A Partial List) 
Gravitational waves are an entirely new way to probe 
the nature of the universe!  
Physics 

• Is General Relativity the correct theory of gravity?
• How does matter behave under extreme gravity? 
• Are black holes really the black holes of General Relativity?

Astrophysics & Astronomy  
• What powers short gamma ray bursts, the brightest events 

in the universe?
• How do stars explode?
• How many stellar mass black holes are there in the universe?
• Do intermediate mass black holes exist?  How many are 

there in the universe?

Cosmology 
• Can we detect the residue of the Big Bang? 

Image credit: W. Benger

Black Hole Merger and Ringdown

Neutron Star Formation

Image credit: NASA

Supernovae

Image credit: Hubble
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The Challenge of Detecting 
Gravitational Waves

They are tiny!  
A gravitational wave from two merging neutron stars 500 million light years away is:

ΔL
L
~10−22

Equivalent to measuring distance 
between the sun and Proxima Centauri to less 

than the width of a human hair!
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How to Detect Gravitational 
Waves

Physically, gravitational waves are strains 
ΔL
L

L=4 km

ΔL
L
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GW150914: SourceLIGO-P150914-v12

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full band-
width of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical-relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Kep-
lerian effective black hole separation in units of Schwarzschild
radii (R

S

= 2GM/c2) and the effective relative velocity given
by the post-Newtonian parameter v/c = (GM⇡f/c3)1/3, where
f is the gravitational-wave frequency calculated with numerical
relativity and M is the total mass (value from Table I).

At the lower frequencies, such evolution is characterized
by the chirp mass [46]

M =
(m1m2)3/5

(m1 +m2)1/5
=
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where f and ḟ are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and ḟ from the data in Fig. 1
we obtain a chirp mass of M ' 30M�, implying that the
total mass M = m1 + m2 is >⇠ 70M� in the detector
frame. This bounds the sum of the Schwarzschild radii of
the binary components to 2GM/c2 >⇠ 210 km. To reach
an orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this fre-
quency would be only ' 350 km apart. A pair of neutron
stars, while compact, would not have the required mass,
while a black hole-neutron star binary with the deduced
chirp mass would have a very large total mass, and would
thus merge at much lower frequency. This leaves black
holes as the only known objects compact enough to reach

an orbital frequency of 75 Hz without contact. Further-
more, the decay of the waveform after it peaks is consis-
tent with the damped oscillations of a black hole relaxing
to a final stationary Kerr configuration. Below, we present
a general-relativistic analysis of GW150914; Fig. 2 shows
the calculated waveform using the resulting source param-
eters.

Detectors — Gravitational-wave astronomy exploits multi-
ple, widely separated detectors to distinguish gravitational
waves from local instrumental and environmental noise, to
provide source sky localization from relative arrival times,
and to measure wave polarizations. The LIGO sites each
operate a single Advanced LIGO detector [32], a modi-
fied Michelson interferometer (see Fig. 3) that measures
gravitational-wave strain as a difference in length of its or-
thogonal arms. Each arm is formed by two mirrors, act-
ing as test masses, separated by L

x

= L
y

= L = 4 km.
A passing gravitational wave effectively alters the arm
lengths such that the measured difference is �L(t) =
�L

x

� �L
y

= h(t)L, where h is the gravitational-wave
strain amplitude projected onto the detector. This differ-
ential length variation alters the phase difference between
the two light fields returning to the beamsplitter, transmit-
ting an optical signal proportional to the gravitational-wave
strain to the output photodetector.

To achieve sufficient sensitivity to measure gravitational
waves the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains
a resonant optical cavity, formed by its two test mass mir-
rors, that multiplies the effect of a gravitational wave on
the light phase by a factor of 300 [48]. Second, a partially
transmissive power-recycling mirror at the input provides
additional resonant buildup of the laser light in the interfer-
ometer as a whole [49, 50]: 20 W of laser input is increased
to 700 W incident on the beamsplitter, which is further in-
creased to 100 kW circulating in each arm cavity. Third,
a partially transmissive signal-recycling mirror at the out-
put optimizes the gravitational-wave signal extraction by
broadening the bandwidth of the arm cavities [51, 52].
The interferometer is illuminated with a 1064-nm wave-
length Nd:YAG laser, stabilized in amplitude, frequency,
and beam geometry [53, 54]. The gravitational-wave sig-
nal is extracted at the output port using homodyne read-
out [55].

These interferometry techniques are designed to maxi-
mize the conversion of strain to optical signal, thereby min-
imizing the impact of photon shot noise (the principal noise
at high frequencies). High strain sensitivity also requires
that the test masses have low displacement noise, which
is achieved by isolating them from seismic noise (low fre-
quencies) and designing them to have low thermal noise
(mid frequencies). Each test mass is suspended as the final
stage of a quadruple pendulum system [56], supported by
an active seismic isolation platform [57]. These systems
collectively provide more than 10 orders of magnitude of

3
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Matched Filter Search
• GW signals from compact binaries are well-

modeled. 

• Matched filtering of data in the frequency domain 
used to search for these signals — optimal for 
modeled signals in noise. 

• Since we do not know a priori the parameters of 
individual binaries we may detect, a bank of 
template waveforms is generated that spans the 
astrophysical signal space (mass, spin) 

• We need enough templates to match the full 
range of signals we expect.  Template banks are 
made “dense” enough so that <1% of signals 
have a matched-filter SNR loss greater than 3% 
— this requires ~250k templates in a bank! 

• Every chunk of time-series data from the detector 
must be compared to every template.  This is the 
dominant computational cost of our search.
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arXiv:1606.04856
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GW151226
band-passed 

35-600 Hz

Time-Frequency map

PRL 116, 241103 (2016)

matched filter 
SNR
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Matched Filter Search
• An SNR threshold identifies “triggers” in each interferometer. 

• Chi-square detection statistic tells us how well each trigger matches the 
template waveform — this is also computationally expensive — performed 
only on coincident triggers in >1 interferometer. 

• Background estimation using “time slides" — tells us the likelihood that 
triggers of any given strength are to be caused by coincident noise (rather 
than a signal). 

• Multiply ~250k templates in a bank by the number of chunks to analyze, 
times the number of slides in an observing run — lots of computing 

• Embarrassingly parallel — can be parallelized over time and/or templates. 

• Search input = primarily time series data (few TB), output = triggers (few MB)
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O1 BBH 
Detection 

Confidence

arXiv:1606.04856
To appear in PRX
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A Global Quest
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LIGO/Virgo Data Analysis

• Four astrophysics groups: Bursts, 
Compact Binaries, Continuous Waves, 
Stochastic 
• Propose science goals, determine 

analysis algorithms, write the 
applications and run them 

• Detector characterization group 
supports the commissioning teams 
and astrophysics groups 
• Determines analysis algorithms, 

writes applications, and runs them 
to identify instrumental artifacts 

• Diverse algorithms and methods 
leading to heterogeneous demands 
on computing infrastructure
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Continuous 
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Detector Characterization

NSF 1104371 no-cost ext. This proposal: 
Data Handling and Analysis for GW Astronomy

2015 2016 2017 2018 2019 2020 2021 2022

O1 O2 O3 O4……….+Kagra
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Requirements
• Analyze data in unison from a worldwide network of detectors to reduce 

background and to enhance scientific output 

• Low-latency analysis infrastructure - seconds to minutes 

• Transient alerts and data quality information within seconds of data acquisition 

• Rapid parameter estimation, verification, and follow-up automated (although 
human vetting is still loop at this time) 

• Offline infrastructure - hours to months 

• Detector characterization feedback to commissioning and enhanced data 
quality generation  

• Deeper and broader searches for transients 

• Searches for continuous and stochastic signals 

• Parameter estimation, model selection and simulations
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LIGO’s Use of NSF+DoE CI
• NSF and DoE-funded cyberinfrastructure critical to the results in detection paper

• Condor provided computing resource management, job scheduling capabilities, 
workflow management (DAGMan). 

• Pegasus provided advanced workflow management for the offline CBC search 
(PyCBC).  Data re-use, facilitation of distributed resources, fault-tolerance — key 
capabilities saved time and computing — direct science benefit. 

• Open Science Grid (OSG) provided >20 million CPU core hours of computing on 
dozens of resources we were previously unable to utilize. 

• Globus GridFTP provided bulk data transfer between LIGO data centers (and to 
OSG) 

• CILogon and Grouper enabled distributed Identity Management across the enormous 
LSC — single sign-on and consistent user and group management across distributed 
services is absolutely critical to every area of our work, and these are key tools. 

• CC* investments provided computing fabric and expertise needed to do this science.
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Executing analyses
• The bulk of our searches are embarrassingly parallel. 
• Virtually all LIGO analyses and computing resources 

are managed using HTCondor, which schedules 
work and handles faults to ensure reliable execution 
of embarrassingly parallel jobs. 
• Broad use of single tools develops a knowledge 

base in scientific user community 
• LIGO and HTCondor team have a very close 15+ 

year-old collaboration. 
• bi-weekly meetings between senior staff 
• drives feature development, bug fixes, feedback
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Implementing analyses
• HTCondor provides the Directed Acyclic Graph Manager 

(DAGMan) for enforcing dependencies between jobs in a large 
workflow. 

• Workflows can have O(10^6) or greater individual jobs — I’m 
told by Miron that LIGO has an unusually large degree of 
workflow automation, and our DAGs are almost the most 
complex DAGMan manages. 

• Extends fault-tolerance from jobs to entire workflows — enables 
complex workflows to reliably restart from point of failure. 

• LIGO continues to use the Pegasus Workflow Management System, 
developed by the USC-ISI group, that functions as a layer on top of 
DAGMan for managing data dependencies. 

• These tools also facilitate LIGO’s use of external resources.
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Scale
• Data rates 

• Channels per site: ~200,000 
• Raw and Reduced data: 0.85 PB/yr 
• Strain per IFO: 0.12 MB/s
• User data: 2.1 PB/yr 

• Computing requirements 
• SU=1 core hour on E5-2670 
• O1 actual: 88 MSU (and counting) 
• O3 estimated: ~1/2 billion SU 

• Users on LIGO Data Grid 
• ~600 users, ~300 active past year 
• Top 20 users 57 MSU past year
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Prioritized Science Goals Define 
LIGO’s Computing Scope

• Three priorities of computing 
correspond to the priorities of LIGO 
science goals.

• Highest: critical, core LIGO science. 
78% of 2018 (O3) computing.

• High: valuable extensions to 
astrophysical sources and 
parameter spaces. 5% of 2018 (O3) 
computing.

• Additional: higher risk/reward. 17% 
of 2018 (O3) computing.

• Each planned search is in one of 
these three categories.

Highest
78%

Additional
78%

High
5%

Computing Demand by Priority 
Category 2018 (O3) Totals

~ 1/2 Billion SUs!

1 SU = 1 aLIGO Service Unit = 1 Intel Xeon E5-2670 2.6Ghz CPU core-hour.
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Hardware Resources: Demand
• LIGO Data Analyses 

• >90 prioritized GW searches and detector characterization 
analyses. 

• >60 software pipelines implementing them. 

• Distribution of computing demand by pipeline: long tail. 

• Top pipeline = 50% of computing demand. 

• Top 10 pipelines = 90% of computing demand. 

• Bottom ~70 pipelines = 10% of computing demand. 

• Contrast with distribution of engineering & operations support effort 
by pipeline: flatter.
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Data Centers

LHO

CIT

LLO

UWM

SYR

CDF AEI

CNAF

IUCAA

LDG: ~100 MSU
Virgo:   ~11 MSU
OSG:   ~15 MSU

Past year
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DA Hardware Resources: Supply

• Many types of supply: dedicated, allocated, opportunistic.  Many 
providers in the US and abroad: 
• Dedicated LIGO Lab clusters (HTC) 
• Dedicated LSC clusters (HTC) 
• Virgo clusters (mostly allocated on shared resources, HTC) 
• PI clusters (shared, HTC and HPC) 
• Campus/regional shared clusters (allocated, HTC and HPC) e.g., 

OrangeGrid, PACE, SciNet 
• National shared supercomputers (allocated, HTC and HPC) e.g., 

XSEDE, Blue Waters 
• Opportunistic cycles (campus clusters, DOE labs, HEP clusters, etc.) 
• future: commercial cloud (EC2, Azure, Google, Rackspace, etc.)? 

• Two runtime software environments: LIGO Data Grid, Open Science Grid

LDG

OSG

~83% 
in O1

~17% 
in O1
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Analysis Metrics
• LIGO worked with Condor team to extend HTCondor to 

enforce requirement that all jobs be “tagged” with strings 
that identify their scientific goal. 

• Each night, usage statistics are collected from LDG 
clusters and partners in VIRGO 

• LVC accounting system’s web interface allows all LVC 
members to understand historical usage by cluster, 
search, and user, and time period. 

• Allows us to measure usage by each search and 
compare to pre-run estimates 

• All LIGO jobs in O1 were tracked!  Accurate statistics by 
science goal, search pipeline, activity (development vs. 
testing vs. production), and observing run.
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Computing Optimization
• Early LSC estimates for Advanced LIGO data analysis computing needs were 

very high (billions of CPU core-hours), exceeding projected computing 
resources. 

• Funding agency (NSF) alarmed, and charged LIGO with three tasks: prioritize 
LVC science goals (implicitly, in case something needed to be cut), 
demonstrate that our codes were extraordinarily efficient, and demonstrate that 
we could utilize shared computing resources outside the LIGO data grid if 
necessary. 

• It turns out our codes were efficient, but not extraordinarily so given their scale. 
• LIGO Laboratory organized a multi-year effort led by a new Data Analysis 

Computing Manager position at Caltech, dedicated optimization team, and the 
regular attention of LVC management, working group chairs, and search leads. 

• NSF told LIGO and TACC to work together to run LIGO searches on XSEDE.
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Computing Optimization
• In lead-up to aLIGO, NSF insisted LIGO place a 

renewed emphasis on efficiency and optimization 
of computationally expensive data analysis 
pipelines. 

• The LIGO Optimization Team is a joint effort 
between LIGO Lab and LSC of between 2 to 5 
FTEs over time. One FTE at Caltech currently open! 

• pyCBC and GstLAL CBC search pipelines were the 
two largest consumers of computing resources in 
aLIGO.
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Optimization Approach: 
“The Whole Patient”

• Scientific Prioritization and Scoping 
• Estimation and Benchmarking of Computational Costs 
• Optimization of Data Analysis Methods and Algorithms 
• Optimization of Code Implementation and Libraries 
• Compiler Optimizations 
• Workflow Management Optimizations 
• Development, Testing, and Simulation Process Optimizations 
• LIGO-Virgo Computing Network Scheduling Optimizations 
• Resource Supply Optimizations (make more cycles available) 
• Workflow Portability Optimizations (expand usable resources) 
• Hardware Procurement 
• Pipeline Reviews including Computational Efficiency 
• Documentation, Training, Collaboration and External Engagement 

Neglect nothing, but focus on “bang for the buck” and where optimization effort can 
be most effective.  Avoid burdening scientists when the payback is small.

8
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Values are in Millions of aLIGO Service Units (MSU), where 1 SU = 1 Intel Xeon E5-2670 2.6Ghz CPU core-hour.

• Factor of ~8 reduction in estimated computational demand of 
high-latency CBC search.

• Factor of ~6 reduction in estimated computational demand of 
low-latency CBC search.

• Possible additional factors of 2-4 reduction under development 
for offline CPU code, order of magnitude for offline GPU code.

Results
• Dramatic gains in efficiency and estimated computational 

cost between May 2014 and May 2015:
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Resource Optimization 
(Supply-Side)

• Open Science Grid — outstanding initial results. 
• OSG’s primary value to LIGO is in providing cyber-infrastructure (“plumbing”) 

and NSF-funded staff to help enable LIGO to harness available non-LDG 
resources (campus and regional clusters, PI clusters, HPC centers, XSEDE 
resources, Virgo clusters, and even future cloud resources) that we’ve been 
unable to effectively utilize in the past. 

• There are also a non-trivial amount of idle CPUs to be harnessed 
opportunistically at non-LIGO OSG institutions — that’s not our main target, but 
it’s a nice side benefit. 

• OSG is not a replacement for LDG clusters providing baseline supply and low-
latency computing — rather it’s a “universal adapter” to external resources, and 
a means to provide elasticity to our computing resources, to meet peak (or 
unexpected) demand. 

• In O1, LIGO harnessed >14 MSUs from external resources via OSG, freeing 
LDG clusters for other analyses.  In total, 17% of O1 computing was delivered 
by OSG, which is more than any individual LVC provider except AEI-Hannover.
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Shared Resources
• Given demand estimates, LIGO/Virgo are unlikely (but not certain) to need 

substantial shared computing resources through 2017-18 (O3) to meet our 
science goals.

• However, modest shared resources will be of benefit for short-term demand 
spikes, new searches, and hardware trade studies.

• We are engaged with XSEDE (US Supercomputer/HPC Network):
• So we’re prepared to scale quickly if we need to.
• So we can continue to leverage XSEDE HPC expertise (ECSS).
• So we’re ready for (and can help define) evolving HTC/HPC computing 

models for future LIGO data analysis, post-O3.
• We are engaged with the Open Science Grid (OSG):

• To bridge the LIGO-Virgo Computing Network (LVCN) to shared computing 
resources available to LIGO (including but not limited to XSEDE).

• To enable sharing of short-term LVCN surpluses.
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LIGO Use of OSG
• Production offline CBC analysis utilized OSG in O1. 

• The LIGO analyses running across >20 different 
OSG resources. 

• >20 million OSG CPU-hours for O1. 

• About 1/3 of these OSG cycles were provided by 
LIGO-connected partners (e.g., the Syracuse 
campus grid), about 1/3 by XSEDE, and the 
remainder were opportunistic cycles scavenged 
from LIGO-unrelated clusters around the US. 

• ~5TB of input data stored at the Holland Computing 
Center (HCC) at the University of Nebraska-Lincoln. 

• The total data volume distributed to jobs from 
Nebraska >1PB. 

• Data rates from Nebraska storage to worker nodes 
~10Gbps sustained.  (Recently demonstrated 
>30Gbps!)

GW151226 CBC 
offline running

GW150914 CBC 
offline running
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PyCBC GPU Search
• Offline search for binary black holes, binary neutron 

stars, and neutron star—black hole binaries 

• Searches across a pre-constructed bank of signal 
parameters 

• Compute coincident detection-statistic for 
candidate events 

• Measure noise background to determine candidate 
event significance
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PyCBC Search
• Pipeline cost dominated by filtering stage: 

• Correlate and matched filter 

• Chi-Squared signal-based veto 

• Template Generation and Event Finding 

• Pipeline described in S. A. Usman et al. arXiv:
1508.02357 (Classical and Quantum Gravity)
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Search Algorithm
for binary parameters in pre-generated template 
bank:  

generate waveform template(f;binary parameters)
 
for d in data:
 
correlate(template,data),
inverse FFT to get signal-to-noise ratio, 
peak find and cluster
 
if (peak above threshold):
signal-based veto
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Graphics Processing Units
• The FindChirp algorithm is can be efficiently implemented 

on GPUs, if the the following practices are followed: 

• Move data over PCIe bus to card once at start of 
computation 

• Minimize coalesced reads across the GPU’s memory 
bus 

• Take advantage of “black box” CUDA FFT library 

• For LIGO data analysis, we can use single precision for 
fast computation on cheap consumer cards
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PyCBC on GPUs
• Use the same search engine replacing CPU code with 

CUDA kernels 

• Easy of maintenance and allows mixing of CPU and GPU 
jobs in a workflow

for binary parameters in pre-generated 
template bank:
generate waveform template(f;binary 
parameters) 
for d in data:
correlate(t,d), cuFFT, peak find, 
cluster
if (peak above threshold):
signal-based veto
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2015 GPU Trade Study
• Determine throughput based on different data types 

(clean, glitchy) and compare to CPU throughput 

• Focused on Maxwell architecture using consumer-
grade cards

Hardware Best Data Worst Data Cost Ave templates/$
E5-1660 v3 76,800 59,200 $1100 65
E3-1220 v3 29,600 25,900 $205 138

GTX 980 221,000 213,800 $550 360
GTX 750 Ti 120,700 116,600 $140 780
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Current Template Throughput
• Test machine with 8 x GTX750 Ti Cards 

• Using CUDA 7.5 and improvements to data handling in 
PyCBC we can presently get 160,000 templates per GTX 
750 Ti 

• Compare to 2015 average of 110,000 templates per GTX 
750 Ti 

• The GTX750 Ti are very promising as a co-processing 
technology for adding additional compute power to 
racks, or for stand-alone GPU systems (Maxwell, no 
additional power, cost $120 each)
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Syracuse GPU Farm
• 14 x Magma EB16 PCIe 

expansion chassis 

• Each EB16 contains 16 x 
GTX750Ti 

• One or two EB16 per Dell 720 
Host 

• 4 x Intel E5-2670 

• 2 x PCIe Expansion Cards 

• Low power, low heat solution 

• 314 GPU SP TFLOPs for $100k

39



GPU Benchmarking
• The three kernels that 

dominate the inner loop are all 
GPU memory to compute 
memory bandwidth bound (on 
the GPU itself) 

• Template generation, 
correlate, and event finding 
are currently implemented as 
separate kernels 

• The cuFFT algorithm uses 
several kernels for each radix 
of the FFT and so triggers 
memory transfers during the 
FFT
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Perhaps they are considering other applications besides the CBC search that would need 
other methods? For CBC with PyCBC, the only methods as of now are those below. 
Tentatively,  we may also want matrix multiply and spline interpolation to do ROM generation.  
 
Kernels 
template generation:  element­wise polynomial 
complex conjugate + multiply:  element­wise vector math 
FFT 
threshold + peak finding :  custom reduction (max)  
bruce chisq:  custom reduction (sum) 

 
 
CPU host usage : 
 
 We have plugin architecture for compute kernels within our codebase, and so our initial 
implementation has very little code divergence from our CPU codebase. Our initial 
benchmarking has been aimed at maximizing GPU throughput performance and not 
necessarily targeted to reduced host CPU usage which can spend significant time waiting for 
triggers and spin­waiting. After more fully tuning and validating our GPU kernels for 
throughput, there is straightforward reorganization of the top­level control host code that can 
reduce CPU usage, primarily by batch submitting kernels to the Device.  
 
ToDo for Alex Nitz 
 
Make pycbc_inspiral nvvprof plots 
 

GPU Optimization Plans

• Reduce number of kernel calls 
by using CUDA callbacks 

• Prototype code has 
developed to fuse correlate 
and FFT into a single kernel 
call 

• Increased speed by almost 
20% 

• Needs further development in 
collaboration with NVIDIA
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Plans for O2
• 1500 GTX 750 GPU cards deployed on atlas.aei.uni-

hannover.de 

• 244 GTX 750 Ti GPU cards deployed on hercules.syr.edu 

• Together these are equivalent to ~ 45,000 Sandybridge cores 

• Initial testing shows that GPU and CPU codes produce 
consistent results for single triggers (up to numerical 
precision) 

• Re-run full O1 search on GPU cards and compare results, if 
successful use GPUs for production searches later in O2.
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Computing Challenges
• #1: Deploying / running optimized code to heterogenous computing environments. Interesting! 

• Dedicated internal, dedicated external, shared/allocated, opportunistic, commercial cloud, etc. 
• Many x86_64 CPU instruction sets, GPUs, MICs, KNL, etc. 

• Properly-optimized executables can be up to factors-of-many faster than lowest-common-
denominator executables. 

• What we don’t want to do: leave available resources un-utilized or run lowest-common-denominator 
code on newer platforms. 

• Approaches: 
• Partition resources in advance, submit “right” code to each.  (Eager planning.) 
• Pre-deploy “right” code to each resource in advance. 
• “Thin” dynamic/lazy payloads.  (How late?  What layer/s in the stack has the intelligence and 

participate identifying/retrieving the right code?) 
• “Fat” payloads, laziest possible determination. 
• Other? 

• For this problem, I’m not sure it matters whether the payload is an executable, a “bundle”, a 
container, or a VM.  Same basic problem. 

• Has anyone solved it in a production scientific environment with many semi-autonomous users 
running existing codes, and many semi-autonomous heterogenous computing providers?
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Computing Challenges
• #2: Usage accounting on heterogenous computing environments.  Boring! 

• Dedicated internal, dedicated external, shared/allocated, opportunistic, 
commercial cloud, etc. 

• Many x86_64 CPU instruction sets, GPUs, MICs, KNL, etc. 
• Different metrics: physical cores, generic core-hours, SUs, watts. 

• You can account on the front end (submit-side) or the back end (execute-side) in 
between (grid middleware), or somehow try to combine/harmonize more than one. 

• What we don’t want to do: 
• Fail to account to for resources used. 
• Fail to normalize CPU core-hours by relative performance.  (But what’s your 

benchmark?) 
• Double-count resources. 

• Right now LIGO uses a combination of automated accounting and painstaking 
human merge.  (Guess which human ultimately has to make sure it’s right?) 

• Can anyone help without invoking xkcd #927?
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Computing Challenges
• #3: Deciding what & when to optimize and when not to.  Interesting! 
• This is tricky for a single developer and code.  Very tricky for an entire collaboration and 

deep stacks of pipelines, middleware, infrastructure, and human processes. 
• Determining the crossover point between the cost of human effort and the potential 

computation savings is key.  As much an art as a science. 
• We need to consider the (very rough) cost of labor, the (very rough) cost of a CPU hour, 

the potential gains from an optimization target, the likelihood of success or failure, and 
prioritize our efforts accordingly.  Lots of human factors: 

• How competent are the developers?  Is the search chair supportive? 
• How much of a pleasure (or pain in the neck) are they to work with?  (Perverse 

incentives!) 
• How well does the optimization problem fit the skill sets of the people I can deploy? 
• How embarrassing would leaving this unoptimized be if our funding agency reviewed 

it? 
• How important is the scientific activity that would benefit? 
• How likely is the optimization to be long-lived (vs eclipsed by new technology or 

science)?  I.e., how many years of payback for the up-front human investment?
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Computing Challenges
• #4 GPUs: Interesting! 

• Accounting 

• Scheduling 

• 2 (?) hardware models: low-density vs high-density 

• Very different economics & scheduling. 

• Porting & maintaining codes 

• Generalization to other parallel architectures (e.g., KNL)?
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Computing Challenges

• I have more, but I’m out of time! 

• Find me during the break and I can talk your ear 
off. 

• Thank you!
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Extra Slides
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The LSC-Virgo White Paper on Gravitational Wave Searches and Astrophysics

Burst CBC CW SGWB
All-sky search for generic
GW transients, in low latency
for EM followup and deep,
offline for 4� detection con-
fidence

Detecting the coalescence of
neutron star and black hole
binaries and measuring their
parameters

All-sky search for isolated
neutron stars, both as a quick-
look on owned resources and
as a deep/broad search on
Einstein@Home

Directional search for
stochastic GW background

Parameter estimation for the
astrophysical interpretation
of detected burst events

Characterizing the astrophys-
ical distribution of compact
binaries

Targeted search for high
value, known pulsars

Isotropic search for stochas-
tic GW background

H
ig
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st
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rit
y

Search for GW bursts trig-
gered by outstanding GRB
alerts

Responding to exceptional
CBC detections

Directed searches for most
promising isolated stars (Cas
A, Vela Jr etc.)

Constraints of a detected
background of astrophysical
origin with long transients

Searches triggered by out-
standing astrophysical events
(a galactic supernova, neu-
tron star transients, an excep-
tional high energy neutrino
alert)

Multi-messenger astronomy
with compact binaries

Directed searches for X-ray
binaries SCO-X1 and J1751-
305

Search for cosmic string
kinks and cusps

Searching for CBC-GRB co-
incidences
Testing General Relativity
with Compact Binaries

Searches triggered by high
energy neutrinos, extra-
galactic supernovae, and
GRB observations

All sky search for spinning
binary neutron star systems
(deep and low latency)

Targeted search for other
known pulsars

Long transient follow up of
CBC and burst candidates

Burst search for intermedi-
ate mass ratio and eccentric
black hole binary systems

Matched filtered search for
intermediate mass black hole
binary systems

Directed searches for other
isolated stars and X-ray bina-
riesH
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All-sky search for long bursts
of > 10 s duration
GRB-triggered search for
long-duration bursts and
plateaus

Exploring effects of detector
noise on parameter estima-
tion

All sky search for isolated
stars (alternative approaches)

Hypermassive neutron star
followup

Searching for sub-solar mass
CBC signals

All-sky search for binaries
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Burst searches triggered
by radio transients and by
SGR/SGR-QPO

Developing searches for
CBC signals with generic
spins

Spotlight deep sky-patch
search ⇤⇤

Burst tests of alternative
gravity theories ⇤⇤

Search for Supernova post
birth signals ⇤⇤

Search for continuous wave
transients ⇤⇤

Table 2: Science priorities of the LIGO-Virgo collaboration, for the four astrophysics search groups: Bursts,
Compact Binary Coalescences (CBC), Continuous Waves (CW), and Stochastic Gravitational Wave Back-
ground (SGWB). The targets are grouped in three categories (highest priority, high priority, additional prior-
ity), based on their detection potential with Advanced Detectors. There is no additional ranking within each
category in this table. Critical for accomplishing these science priorities are the detector characterization,
calibration and injection activities described in this document.
⇤⇤ Future searches under development, not included in ongoing production computing requests.

3

Science Priorities
• Highest priority: searches 

most likely to make detections 
or yield significant 
astrophysical results; 

• High priority: promising 
extensions of the highest 
priority goals that explore 
larger regions of parameter 
space or can further the 
science potential of LIGO and 
Virgo; 

• Additional priority: sources 
with low detection probability 
but high scientific payoff. Table 2 in LIGO Document T1600115
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Impact of Template Waveforms
• Two different waveform 

families used in O1 depending 
on target source: 

• Post-Newtonian (PN) 

• Effective One Body (EOB) 

• Very different computationally 

• PN is expressed as a 
frequency-domain 
polynomial 

• EOB is numerically 
integrated in the time 
domain

Abbott et al. Phys. Rev. D 93, 122003 (2016)
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GPU Template Implementation
• Currently no GPU implementation of the Effective One Body 

waveforms used for binary black hole searches 

• Grad student project underway to create a GPU version of 
SEOBNRv2 Reduced Order Model waveform used in O1 

• Core of algorithm is cubic b-spline interpolation, CUDA 
implementations available 

• Investigating low-cost waveform generation techniques for a 
that can be template-family agnostic 

• Important since template families can change in response to 
science needs
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