
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Citation and Reproducibility in Software

Daniel S. Katz
Assistant Director for Scientific Software & Applications, NCSA
Research Associate Professor, CS
Research Associate Professor, ECE
Research Associate Professor, iSchool
dskatz@illinois.edu, d.katz@ieee.org, @danielskatz

Software as infrastructure

Science

Software	

Computing	
Infrastructure

• Software (including services)
essential for the bulk of science
- About half the papers in recent issues of Science were

software-intensive projects
- Research becoming dependent upon advances in software
• Wide range of software types: system, applications, modeling,

gateways, analysis, algorithms, middleware, libraries

• Software is not a one-time effort,
it must be sustained
• Development, production, and maintenance

are people intensive
• Software life-times are long vs hardware
• Software has under-appreciated value

Computational science research

Create
Hypothesis

Acquire
Resources (e.g.,

Funding,
Software, Data)

Perform
Research (Build

Software &
Data)

Publish
Results (e.g.,
Paper, Book,

Software, Data)

Gain
Recognition

Knowledge

Data science research

Create
Hypothesis

Acquire
Resources (e.g.,

Funding,
Software, Data)

Perform
Research (Build

Software &
Data)

Publish
Results (e.g.,
Paper, Book,

Software, Data)

Gain
Recognition

Acquire
Resources

(Data)

Purposes of software in research

Create
Hypothesis

Acquire
Resources (e.g.,

Funding,
Software, Data)

Perform
Research (Build

Software &
Data)

Publish
Results (e.g.,
Paper, Book,

Software, Data)

Gain
Recognition

Infrastructure
Research

National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Software Citation

Software Reproducibility

Credit is a problem in Academia

http://www.phdcomics.com/comics/archive.php?comicid=562

Another Problem

Credit: Amy Brand, MIT

Software Citation Motivation

• Scientific research is becoming:
• More open – scientists want to collaborate; want/need to share
• More digital – outputs such as software and data; easier to share

• Significant time spent developing software & data
• Efforts not recognized or rewarded
• Citations for papers systematically collected, metrics

built
• But not for software & data

• Hypothesis:
Better measurement of contributions (citations, impact, metrics)
—> Rewards (incentives)
—> Career paths, willingness to join communities
—> More sustainable software

Incentives, citation/credit models, and
metrics (1)

1. Downloads
• From web/repository logs/stats

2. Installation/Build
• Add “phone home” mechanism at build level
• e.g., add ‘curl URL’ in makefile

3. Use/Run
• Track centrally; add “phone home” mechanism at run level

• Per app, e.g. add ‘curl URL’ in code, send local log to server
• For a set of apps, e.g., sempervirens project, Debian

popularity contest
• Track locally; ask user to report

• e.g., duecredit project, or via frameworks like Galaxy

Incentives, citation/credit models, and
metrics (2)
4. Impact

• Project CRediT (and Mozilla contributorship badges)
• Record contributorship roles

• Force 11 Software Citation Working Group (and merged WSSSPE software
credit WG)

• Define software citation principles
• Codemeta

• Minimal metadata schemas for science software
• Lots of research projects (including my own research on transitive credit -

http://doi.org/10.5334/jors.by)
• Altmetrics – not citations, but other structured measures of discussion (tweets,

blogs, etc.)
• ImpactStory

• Measure research impact: reads, citations, tweets, etc.
• Depsy (roughly ImpactStory specifically for software)

• Measure software impact: downloads; software reuse (if one package is
reused in another package), literature mentions (citations of a software
package), and social mentions (tweets, etc.)

How to better measure software
contributions

• Citation system was created for papers/books
• We need to either/both

1. Jam software into current citation system
2. Rework citation system
• Focus on 1 as possible; 2 is very hard.

• Challenge: not just how to identify software in a paper
• How to identify software used within research process

Software citation today

• Software and other digital resources currently appear in
publications in very inconsistent ways

• Howison: random sample of 90 articles in the biology
literature -> 7 different ways that software was
mentioned

• Studies on data and facility citation -> similar results

J. Howison and J. Bullard. Software in the scientific literature: Problems with seeing, finding, and using software mentioned in the biology literature. Journal of the

Association for Information Science and Technology, 2015. In press. http://dx.doi.org/10.1002/asi.23538.

Software citation principles: People & Process
• FORCE11 Software Citation group started July 2015
• WSSSPE3 Credit & Citation working group joined September 2015
• ~55 members (researchers, developers, publishers, repositories, librarians)
• Working on GitHub https://github.com/force11/force11-scwg & FORCE11

https://www.force11.org/group/software-citation-working-group
• Reviewed existing community practices & developed use cases
• Drafted software citation principles document

• Started with data citation principles, updated based on software use cases and
related work, updated based working group discussions, community feedback
and review of draft, workshop at FORCE2016 in April

• Discussion via GitHub issues, changes tracked
• Contains 6 principles, motivation, summary of use cases, related work,

discussion & recommendations
• Submitted, reviewed and modified (many times), now published

• Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working
Group.(2016) Software Citation Principles. PeerJ Computer Science 2:e86. DOI:
10.7717/peerj-cs.86 and https://www.force11.org/software-citation-principles

Software citation principles

• Contents (details on next slides):
• 6 principles: Importance, Credit and Attribution, Unique

Identification, Persistence, Accessibility, Specificity
• Motivation, summary of use cases, related work, and discussion

(including recommendations)
• Format: working document in GitHub, linked from

FORCE11 SCWG page, discussion has been via GitHub
issues, changes have been tracked

• https://github.com/force11/force11-scwg
• Reviews and responses also in PeerJ CS paper

Principle 1. Importance

• Software should be considered a legitimate and
citable product of research. Software citations should
be accorded the same importance in the scholarly
record as citations of other research products, such
as publications and data; they should be included in the
metadata of the citing work, for example in the reference
list of a journal article, and should not be omitted or
separated. Software should be cited on the same basis
as any other research product such as a paper or a
book, that is, authors should cite the appropriate set of
software products just as they cite the appropriate set of
papers.

Principle 2. Credit and Attribution

• Software citations should facilitate giving scholarly
credit and normative, legal attribution to all
contributors to the software, recognizing that a single
style or mechanism of attribution may not be applicable
to all software.

Principle 3. Unique Identification

• A software citation should include a method for
identification that is machine actionable, globally
unique, interoperable, and recognized by at least a
community of the corresponding domain experts, and
preferably by general public researchers.

Principle 4. Persistence

• Unique identifiers and metadata describing the
software and its disposition should persist – even
beyond the lifespan of the software they describe.

Principle 5. Accessibility

• Software citations should facilitate access to the
software itself and to its associated metadata,
documentation, data, and other materials necessary for
both humans and machines to make informed use of
the referenced software.

Principle 6. Specificity

• Software citations should facilitate identification of,
and access to, the specific version of software that
was used. Software identification should be as specific
as necessary, such as using version numbers, revision
numbers, or variants such as platforms.

Example 1: Make your software citable

• Publish it – if it’s on GitHub, follow steps in
https://guides.github.com/activities/citable-code/

• Otherwise, submit it to zenodo or figshare, with
appropriate metadata (including authors, title, …,
citations of … & software that you use)

• Get a DOI
• Create a CITATION file, update your README, tell

people how to cite
• Also, can write a software paper and ask people to cite

that (but this is secondary, just since our current system
doesn’t work well)

Example 2: Cite someone else’s software in
a paper
• Check for a CITATION file or README; if this says how to cite the

software itself, do that
• If not, do your best following the principles

• Try to include all contributors to the software (maybe by just naming the
project)

• Try to include a method for identification that is machine actionable,
globally unique, interoperable – perhaps a URL to a release, a company
product number

• If there’s a landing page that includes metadata, point to that, not
directly to the software (e.g. the GitHub repo URL)

• Include specific version/release information
• If there’s a software paper, can cite this too, but not in place of citing

the software

Working group status & next steps

• Final version of principles document published in PeerJ CS
• Considering endorsement period for both individuals and organizations (will

suggest to FORCE11, might defer to implementation phase)
• Want to endorse? Email/talk to me

• Will create infographic and 1–3 slides
• In progress; draft infographic on next slide

• Will create white paper that works through implementation of some use
cases

• Software Citation Working Group ends
• Software Citation Implementation group starts

• Works with institutions, publishers, funders, researchers, etc.,
• Writes full implementation examples paper?
• Want to join? Sign up on current FORCE11 group page

• https://www.force11.org/group/software-citation-working-group

Credit: Laura Rueda, DataCite

A software citation should
include a method for identification

that is machine actionable,
globally unique, interoperable,

and recognized by at least a
community of the corresponding

domain experts, and preferably
by general public researchers.

UNIQUE
IDENTIFICATION

Software citations should
facilitate access to the
software itself and to its
associated metadata,
documentation, data, and
other materials necessary
for both humans and
machines to make
informed use of the
referenced software.

ACCESSIBILITY

Software should be considered
a legitimate and citable product
of research. Software citations
should be accorded the same
importance in the scholarly
record as citations of other
research products. They should
be included in the metadata of
the citing work. Software should
be cited on the same basis as
any other research product
such as a paper or a book.

IMPORTANCE

Unique identifiers and metadata
describing the software and its
disposition should persist —even
beyond the lifespan of the
software they describe.

PERSISTENCE

Software citations should facilitate giving
scholarly credit and normative, legal attribution

to all contributors to the software, recognizing
that a single style or mechanism of attribution

may not be applicable to all software.

CREDIT AND ATTRIBUTION
Software citations should facilitate identification of,
and access to, the specific version of software that

was used. Software identification should be as specific
as necessary, such as using version numbers, revision

numbers, or variants such as platforms.

SPECIFICITY

SOFTWARE
CITATION
PRINCIPLES

Journal of Open Source Software (JOSS)
• In the meantime, there’s JOSS
• A developer friendly journal for research software packages
• “If you've already licensed your code and have good documentation

then we expect that it should take less than an hour to prepare and
submit your paper to JOSS”

• Everything is open:
• Submitted/published paper: http://joss.theoj.org
• Code itself: where is up to the author(s)
• Reviews & process: https://github.com/openjournals/joss-reviews
• Code for the journal itself: https://github.com/openjournals/joss

• Zenodo archives JOSS papers and issues DOIs
• First paper submitted May 4, 2016

• As of 18 January: 62 accepted papers, 21 under review, 17 submitted
(pre-review)

National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Software Citation

Software Reproducibility

Adapted from Carole Goble: http://www.slideshare.net/carolegoble/what-is-reproducibility-gobleclean

Reproducibility

• Problems:
• Scientific culture: reproducibility is important at a high level, but not in

specific cases
• Like Mark Twain’s definition of classic books: those that people

praise but don’t read
• No incentives or practices that translate the high level concept of

reproducibility into actions that support actual reproducibility
• Reproducibility can be hard due to a unique situation

• Data can be taken with a unique instrument, transient data
• Unique computer system was used

• Given limited resources, reproducibility is less important than new
research

• A computer run that took months is unlikely to be repeated, because
generating a new result is seen as a better use of the computing
resources than reproducing the old result

Software reproducibility

• Technical concerns
• Software collapse (coined by Konrad Hinsen1): the fact that software stops

working eventually if is not actively maintained
• Software stacks used in computational science have a nearly universal multi-

layer structure
• Project-specific software: whatever it takes to do a computation using

software building blocks from the lower three levels: scripts, workflows,
computational notebooks, small special-purpose libraries and utilities

• Discipline-specific research software: tools and libraries that implement
models and methods which are developed and used by research
communities

• Scientific infrastructure: libraries and utilities used for research in many
different disciplines, such as LAPACK, NumPy, or Gnuplot

• Non-scientific infrastructure: operating systems, compilers, and support code
for I/O, user interfaces, etc.

• Software in each layer builds on and depends on software in all layers below it
• Any changes in any lower layer can cause it to collapse

1http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/

Software reproducibility
• Project-specific software (developed by scientists)
• Discipline-specific research software (developed by scientists & developers)
• Scientific infrastructure (developed by developers)
• Non-scientific infrastructure (developed by developers)

• Where to address reproducibility?
• Hinsen1: Just addressing project-specific software isn’t enough to solve

software collapse; enemy is changes in the foundations
• Options are similar for house owners facing the risk of earthquakes

1. Accept that your house or software is short-lived; in case of collapse, start from
scratch

2. Whenever shaking foundations cause damage, do repair work before more
serious collapse happens

3. Make your house or software robust against perturbations from below
4. Choose stable foundations

• Active projects choose 1 & 2
• We don’t know how to do 3 (CS research needed, maybe new thinking2)
• 4 is expensive & limits innovation in top layers (banks, military, NASA)

1http://blog.khinsen.net/posts/2017/01/13/sustainable-software-and-reproducible-research-dealing-with-software-collapse/
2Greg Wilson colloquium at NCSA: https://www.youtube.com/watch?v=vx0DUiv1Gvw

Software reproducibility
• Titus Brown1: “Archivability is a disaster in the software

world”
• Can’t we just use containers/VMs?

• Docker itself isn’t robust2

• VMs and docker images provide bitwise reproducibility, but
aren’t scientifically useful; big black boxes don't really let you
reuse or remix the contents

• Options:
• Run everything all the time

• Hinsen’s option 2
• Aka continuous analysis3, similar to continuous integration

• Acknowledge that exact repeatability has a half life of utility,
and that this is OK

• We don’t build houses to last forever…

1http://ivory.idyll.org/blog/2017-pof-software-archivability.html

3Beaulieu-Jones & Greene, https://doi.org/10.1101/056473
2https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

Software reproducibility
• Costs and benefits

• If software-enabled results could be made reproducible at no cost, do so
• If cost is 10x cost of original work, don’t
• At 1x, probably still no
• What about at 0.1x (+10%)? Or +20%?
• How to balance reproducibility cost vs lost opportunity of new research?

• Could be general question about the culture of science or specific
question about any one experiment/result

• If not practical to make everything reproducible, could use
cost:benefit ratio to determine what to do

• Also, could factor in confirmation depth (David Soergel1) as a
measure of reproducible scientific research (i.e., benefit)

• Shallowest form of confirmation: peer review
• Deeper forms (different software -> different approach -> different inputs): more

confidence in results

1http://davidsoergel.com/posts/confirmation-depth-as-a-measure-of-reproducible-scientific-research

Conclusions

• Software
• Important today, essential tomorrow

• Credit
• A known problem for papers, worse for software

• Citation
• We know what to do (mostly), now need to do it

• Reproducibility
• We think we know what we want to do
• But don’t know how to do it

• What you can do
• Cite the software you use, make it easy for others to cite the software

you write (and see the “I solemnly pledge” manifesto – http://ceur-
ws.org/Vol-1686/WSSSPE4_paper_15.pdf)

• Work towards reproducibility as much as possible

National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Citation and Reproducibility in Software

Daniel S. Katz
Assistant Director for Scientific Software & Applications, NCSA
Research Associate Professor, CS
Research Associate Professor, ECE
Research Associate Professor, iSchool
dskatz@illinois.edu, d.katz@ieee.org, @danielskatz

National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Additional Software Citation Principle Slides:
discussion topics

Discussion: What to cite

• Importance principle: “…authors should cite the
appropriate set of software products just as they cite
the appropriate set of papers”

• What software to cite decided by author(s) of product, in
context of community norms and practices

• POWL: “Do not cite standard office software (e.g. Word,
Excel) or programming languages. Provide references
only for specialized software.”

• i.e., if using different software could produce different
data or results, then the software used should be cited

Purdue Online Writing Lab. Reference List: Electronic Sources (Web Publications). https://owl.english.purdue. edu/owl/resource/560/10/, 2015.

Discussion: What to cite (citation vs
provenance & reproducibility)

• Provenance/reproducibility requirements > citation
requirements

• Citation: software important to research outcome
• Provenance: all steps (including software) in research
• For data research product, provenance data includes all

cited software, not vice versa
• Software citation principles cover minimal needs for

software citation for software identification
• Provenance & reproducibility may need more metadata

Discussion: Software papers

• Goal: Software should be cited
• Practice: Papers about software (“software papers”) are

published and cited
• Importance principle (1) and other discussion: The

software itself should be cited on the same basis as
any other research product; authors should cite the
appropriate set of software products

• Ok to cite software paper too, if it contains results
(performance, validation, etc.) that are important to the
work

• If the software authors ask users to cite software paper,
can do so, in addition to citing to the software

Discussion: Derived software

• Imagine Code A is derived from Code B, and a paper
uses and cites Code A

• Should the paper also cite Code B?
• No, any research builds on other research
• Each research product just cites those products that it

directly builds on
• Together, this give credit and knowledge chains
• Science historians study these chains
• More automated analyses may also develop, such as

transitive credit

D. S. Katz and A. M. Smith. Implementing transitive credit with JSON-LD. Journal of Open Research Software, 3:e7, 2015. http://dx.doi.org/10.5334/jors.by.

Discussion: Software peer review

• Important issue for software in science
• Probably out-of-scope in citation discussion
• Goal of software citation is to identify software that has

been used in a scholarly product
• Whether or not that software has been peer-reviewed is

irrelevant
• Possible exception: if peer-review status of software is

part of software metadata
• Working group opinion: not part of the minimal metadata

needed to identify the software

Discussion: Citations in text

• Each publisher/publication has a style it prefers
• e.g., AMS, APA, Chicago, MLA

• Examples for software using these styles published by
Lipson

• Citations typically sent to publishers as text formatted in
that citation style, not as structured metadata

• Recommendation: text citation styles should support:
• a) a label indicating that this is software, e.g. [Computer

program]
• b) support for version information, e.g. Version 1.8.7

C. Lipson. Cite Right, Second Edition: A Quick Guide to Citation Styles–MLA, APA, Chicago, the Sciences, Professions, and More. Chicago Guides to Writing,

Editing, and Publishing. University of Chicago Press, 2011.

Discussion: Citation limits

• Software citation principles
• –> more software citations in scholarly products
• –> more overall citations
• Some journals have strict limits on

• Number of citations
• Number of pages (including references)

• Recommendations to publishers:
• Add specific instructions regarding software citations to

author guidelines to not disincentivize software citation
• Don’t include references in content counted against page

limits

Discussion: Unique identification

• Recommend DOIs for identification of published
software

• However, identifier can point to
1. a specific version of a piece of software
2. the piece of software (all versions of the software)
3. the latest version of a piece of software

• One piece of software may have identifiers of all 3 types
• And maybe 1+ software papers, each with identifiers
• Use cases:

• Cite a specific version
• Cite the software in general
• Link multiple releases together, to understanding all citations

Discussion: Unique identification (cont.)

• Principles intended to apply at all levels
• To all identifiers types, e.g., DOIs, RRIDs, ARKS, etc.
• Though again: recommend when possible use DOIs

that identify specific versions of source code
• RRIDs developed by the FORCE11 Resource

Identification Initiative
• Discussed for use to identify software packages (not specific

versions)
• FORCE11 Resource Identification Technical Specifications

Working Group says “Information resources like software are
better suited to the Software Citation WG”

• Currently no consensus on RRIDs for software

Discussion: Types of software

• Principles and discussion generally focus on software as
source code

• But some software is only available as an executable, a
container, or a service

• Principles intended to apply to all these forms of
software

• Implementation of principles will differ by software type
• When software exists as both source code and

another type, cite the source code

Discussion: Access to software

• Accessibility principle: “software citations should permit
and facilitate access to the software itself”

• Metadata should provide access information
• Free software: metadata includes UID that resolves to

URL to specific version of software
• Commercial software: metadata provides information on

how to access the specific software
• E.g., company’s product number, URL to buy the software

• If software isn’t available now, it still should be cited
along with information about how it was accessed

• Metadata should persist, even when software doesn’t

Discussion: Identifier resolves to …

• Identifier that points directly to software (e.g., GitHub
repo) satisfies Unique Identification (3), Accessibility (5),
and Specificity (6), but not Persistence (4)

• Recommend that identifier should resolve to
persistent landing page that contains metadata and
link to the software itself, rather than directly to
source code

• Ensures longevity of software metadata, even beyond
software lifespan

• Point to figshare, Zenodo, etc., not GitHub

Last Problem

Credit: Amy Brand, MIT

