Geant 4

Comments on simulation challenges

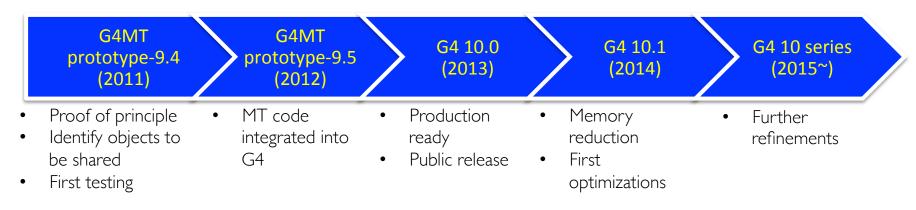
Makoto Asai

SLAC SD/EPP

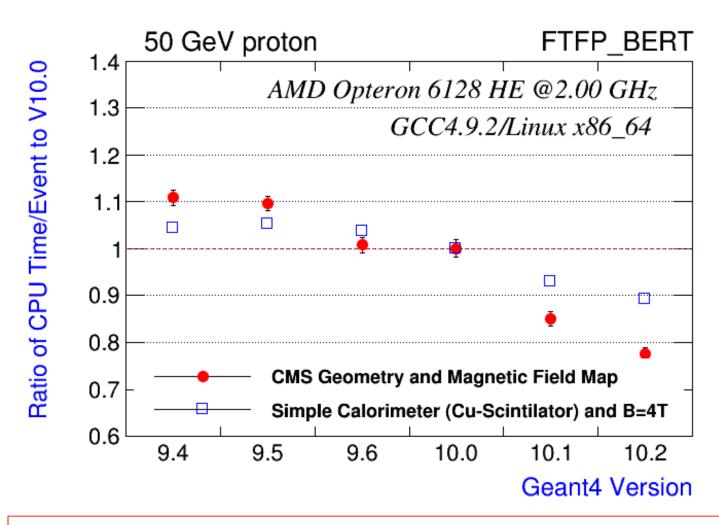
January 24th, 2017

@ HSF CWP meeting, SDSC

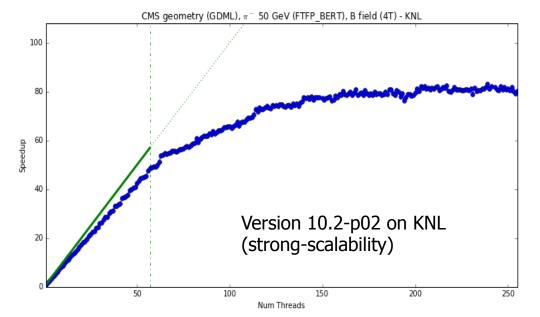
Evolution of Geant4


SLAC

- Dec '94 Project start ; Apr '97 First alpha release ; Jul '98 First beta release
- Dec '98 First Geant4 public release version 1.0
- Dec '00 : Geant4 version 3.0 release
 - Migration from RogueWave to STL
- Apr '03 Geant4 version 5.1 release
 - Introducing Cuts-per-region
- Dec '04 Geant4 version 7.0 release
 - Migration from math.h to cmath.h
- Dec '05 Geant4 version 8.0 release
 - Revising General fast simulation (shower parameterization) framework
- Jun '07 Geant4 version 9.0 release
 - Start offering pre-packaged physics lists
 - Introducing Parallel world navigation
- Dec '08 Geant4 version 9.2 release
 - Introducing Command-based scorer
- Dec '10 Geant4 version 9.4 release
 - Introducing Layered mass geometry
- Dec '13 Geant4 version 10.0 release
 - Introducing Multithread
- We currently provide one public release every year.


Geant4 Version 10 Series

- Major release Geant4 version 10.0 was released on December 6th, 2013.
 - The first major release since June 2007.
- There are several highlighted features including
 - Multithreading capability with event parallelism
 - Isomer production
 - Enhancements in biasing options
 - Introduction of phonon transport with a new concept of crystal
 - Support for GNUmake and LHEP and CHIPS physics models are ceased
- Following version 10 series were released with lots of improvements in both physics and computing aspects.
- Version 10.3 on December 9th, 2016 is the current version



ATLAS: "The 10% CPU improvement we gain from the move from G4 9.6 to 10.1 is invaluable to the collaboration."

Many core, many thread

- For three years we have provided support for running Geant4 on KNC.
 - ATLAS, CMS successfully multithreaded
- We will soon extend our support to KNL.
 - With KNL, thanks to x86 binary compatibility including the use of gcc, work-flow is tremendously simplified.

System	Time to completion (5k events)
Xeon E5-2620 @ 2.1 GHz (12 cores, 24 threads)	570 s
KNC (31s1P) @ 1.0 GHz (228 threads)	1000 s
KNL (7210, quadrant mode, MCDRAM only) @ 1.3 GHz (255 threads)	378 s (x3 improvement w.r.t. KNC)
KNL (shared library)	480 s (25% slower than static library)

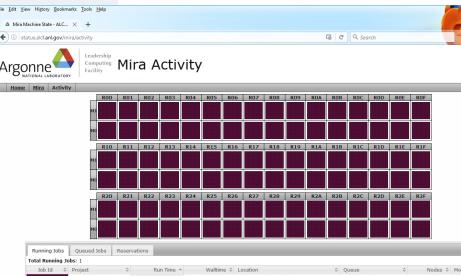
More memory-efficient, more HPC friendly

CI	AC
JL	

Version	Intercept	Memory/thread
9.6 (seq.)	113 MB	(113 MB)
10.0.p02-seq	170 MB	(170 MB)
10.0.p02-MT	151 MB	28 MB
10.3.beta-MT	148 MB	9 MB

Memory space required for Intel Xeon Phi 3120A Full-CMS geometry (GDML), 4 Tesla field, 50 GeV pi- (FTFP_BERT)

# of CPU	# of threads	Speed-up factor	efficiency
10	80	79	98. 8%
20	160	158	98. 8%
40	320	317	99. 0%
80	640	626	97. 8%
160	1280	1251	97. 7%
320	2560	2297	89. 7%
640	5120	3555	69. 4%


Tachyon-2 supercomputer @ KISTI (South Korea) FTFP_BERT physics validation benchmark

Geant4 has successfully run with a combination of MT and MPI on Mira Bluegene/Q Supercomputer (@ANL) with all of its 3 million threads

Full-CMS geometry & field

I/O is the limiting factor to scale large concurrent threads:

- Granular input data files, output data/histograms, etc.
- Targeting also Cori @ NERSC

Next steps

- 2014 was the 20th anniversary of Geant4. After 20 years with several architectural evolutions, Geant4 is still steadily evolving.
 - Latest major evolution was Geant4 version 10.0 released in December 2013 that is the first fully multithreaded large-scale physics software in the world.
 - Next evolution is underway to migrate to the recent C++ standards,
 C++11/14, that enables us to better manage threads and memories used by threads.
 - New physics models for coming experiments, e.g. hadronic model for multi-TeV regime (for LHC run-II/III/IV), specialized EM model for noble liquid (e.g. liq.Xe) and neutrino physics model (for intensity frontier)
- Many Geant4 collaborators are engaging to several R&D activities to explore the opportunities in MIC, GPU, etc.
- Geant4 is nowadays mission-critical for many users including all the current and near-future HEP experiments. Geant4 will be maintained and continue to evolve for at least next decade.
 - We do appreciate your suggestions/requests.

