Comments/Needs for CMS event reconstruction

Slava Krutelyov (UCSD)
Reconstruction WG, HSF CWP Workshop
Jan 24, 2017

- Knowing the envelope
- Features to follow

Knowing the envelope

Resource side

- We are projecting to needs for running in 7 years or more. Projections for technology gains (better HS06 of GB memory or PB storage per \$) will be more precise a few years from now. We should be aware of this realism coming.
- Memory/core envelope can restrict workflows (e.g KNL is ~0.3 GB/core)

Physics side

- Trigger rate can be lower
- Track reconstruction can be restricted in momentum or vertex(s) of interest
- How much MC is enough
- Settle on expensive part that can't be redone on the fly (reduce chance of rereco)
- Knowing which parts of pileup not to reconstruct
- Planned reconstruction workflows should have a baseline and an affordable configurations to converge on a workable solution. Define affordable.
 - An important component here is to keep a "fair share" in algorithm/product cost.
- Detector hardware side: recall that detectors are not built yet
 - Can the hardware be adjusted still to make reconstruction faster

Features to follow

Costly features

- Tracking: (this has historically been ~50% of CMS reconstruction time)
 - * Large enough task that can even benefit from specialized hardware and software implementation
 - * Faster versions of algorithms most beneficial

New detector capabilities

- High granularity calorimeter
 - * Number of channel and fairly high occupancies can lead to costly algorithms
- Timing layer(s) time measurement in tracks can reduce impact of (in-time) pileup

Machine learning

- Training: not explicitly a part of reconstruction, see other WG
- Classification applications: adiabatic inclusion appears to be most practical
 - * Robust and less ambitious to be kept at lower level
 - * Make sure most useful discriminants are available in (mini)AOD outputs
- Pattern recognition: adiabatic inclusion may be difficult for lower level objects
 - * Replacing one type of tracking with another can take a O(year)

Multi-threaded algorithm evolution

- Fine-grained parallelism (at event level)
- Improve memory use efficiency (reentrant; less cloning; event data fragmentation)