
A) Compute Architectures, platforms and software performance 
 
Panel: Jeff Hammond (Intel), Tom Gibbs (NVIDIA), Chris Jones (FNAL), G.Stewart 
(U.Glasgow), G.Eulisse (CERN Alice), Pere Mato (CERN SFT) 
Moderator: David Abdurachmanov (U.Nebraska-Lincoln) 
 
Panel questions:  
 
1. In your view, considering future hardware product announcements from Intel, Nvidia, their 
partners and other companies, what are the most important trends for the next 5 years and how 
will those change software development? 
 
2. Software engineering follows computing architectures evolution and optimizations. What best 
practices could you suggest for HEP community to follow and what should we avoid? Note that 
we [HEP community] develop software that will be used for a long period, e.g a decade or more. 
 
3. In your view what computing languages and computing paradigms we [HEP community] are 
not benefitting from that we should be looking at from the standpoint of performing more work 
on the same amount of physical hardware? 
 
4. Common software developments: examples and discussions on the HEP community needs. 
How can industry help HEP? 
 
5. How do we grow software development skills in HEP community and how we can retain 
expertise? 
 
Live minutes: 
 
Potential institute themes/efforts that come out of this panel: 

● Education of developers (potentially with software carpentry?) 
● Discovery of and promotion of coding best practices (work with vendors?) 
●  

 
Jeff (Intel): Moore’s law continues and will continue meaning a die will have more and more 
transistors. But the power budget is limited meaning not all transistors can be powered at 3 Ghz 
at the same time. Open the possibility for specialization: “dark silicon” can be used for very 
specific applications, being powered only when needed (the other part of the processor being 
temporarily switched off). 
Tom (Nvidia): Moore’s law easy ride is over. Performance requires code optimization and this 
cannot be done by every postdoc. Need to rely on optimized libraries. 
Jeff: moving from coarse grain parallelisation (MPI) to fine grained (vectorisation,GPUs…), 
properly handling the memory hierarchy is now a requirement for SW performance. 
 



Recommended SW engineering practices 
- Jeff: rely on “standardized” languages, isolate through layering/libraries the scientific 

apps from the performance optimizations 
- C. Jones (FNAL): educate developers that global state is a bad thing 
- Graeme: our current code is too complex, both because the processes are complex (like 

reconstruction) and because of the sociology (a few experts and a long tail of 
contributors whose contributions are needed). We need to find a way to make our code 
simpler. 

- Jeff: we need new tools that combine the productivity of tools like Python and MatLab 
with the performance of HPC languages like Fortran. Julia is a good example with its JIT 
compilation approach (using LLVM JIT compiler), verified on several concrete 
HPC-friendly use cases. 

- Jeff: constraining people about their programming practice is not efficient: constrained 
people starts a counter culture (or do crazy things to work around standard practices that 
were imposed to them)! We need, through appropriate tools, to let people be creative 
and “guide them” so that the resulting code is efficient.  

 
Gaining a 10x in performance 

- Jeff/Tom: there is room for a 10x improvement of software performance with the 
improvements/features on roadmaps. But this will require relying on highly optimized 
low-level libraries. Consolidation required for having highly efficient low-level libraries: 
fragmentation of the limited low-level expertise is an obstacle. Example of deep learning: 
basically only one kernel, optimizing it for every architecture is easier. 

- Graeme: there is unfortunately no magic for a major improvement of performance in 
things like tracking for example. Already a lot of optimization done between run1 and 
Run2. Looking at a revolutionary way of doing tracking that will dramatically improve 
performance but we have not found the solution yet! At the end we are constrained by 
the requirement of maintaining physics performance! 

- Jeff: take into account end-to-end optimization. Sometimes concentrating on the 
compute optimization is not the right approach. It may happen that the bottleneck is 
somewhere else: network, storage… 

 
 
 
 
 
 
 
 
 
 
 
 


