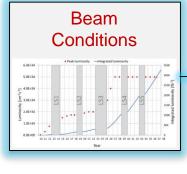


Follow-up on heat loads and cooling capacity estimations

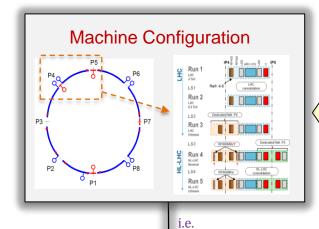
(for WP2-WP9 discussion)

Daniel Berkowitz (TE-CRG)
On behalf of HL-LHC / WP9 / Heat Load Working Group

CERN, 9 November 2016


Outline

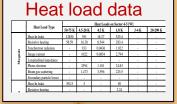
- 1. Methodology for heat load estimation (quick recapitulation)
- 2. Reasons to update heat load data
- 3. Proposed update of heat load data (for sync.rad., image current & e-cloud)
- 4. Interface between WP2 & WP9 (comunication of heat load data)


Methodology for heat load estimations

EDMS 1719021 v0.2

Most of the dynamic heat loads are induced by the beam.

- Luminosity,
- Bunch number.
 - ...



number of components

on Sector

The amount of refrigerated components can change over the time.

EDMS 1610791 v0.3

Recollected from official sources:

- HLWG 2000
- LHC Design Report
- LHC Project Note 140

• ...

Scaling laws (equations)

Scaling factors for:

- Heat-in leaks
- Resistive heating
- Synchrotron radiation
- Image current
- ...

Total heat loads are defined by

- Beam conditions
- Machine configurations

<u>Reference</u>

stage.

heat loads = (for "LHC nominal")

Theoretical values!

considered at a later

Measured values to be

scale up "scaled" heat loads

Total heat load on Sector

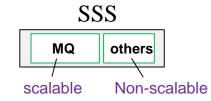
Values w/o contingency

sum all

Reasons to update heat load data

EDMS 1610791 v0.3

Heat load data								
		Heat Loads on Sector 4-5 [W]						
	Heat Load Type	50-75 K	4.5-20 K	4.5 K	1.8 K	3-4 K	20-290 K	
	Heat-In leaks	12830	391	18.37	529.4			
	Resistive heating	58.59	16.38	8.544	283.4			
	Synchrotron radiation		933	0.0436	1.822			
Magnets	Image current		1022	0.0654	2.794			
ž	Longitudinal impedance							
~	Photo-electron		2594	1.101	24.83			
	Beam gas scattering		1.473	3.596	225.5			
	Secondary particle losses							
	Heat-In leaks	392.5	5		50			
	Resistive heating				2.24			


Recollected from official sources:

- •HLWG 2000
- •LHC Design Report
- LHC Project Note 140

• ...

Identified points to be refined (after discussions with G.Iadarola for WP2)

- Design Report (ch.11 *cryogenics*) vs calculated by WP2 (see G.ladarola summary)
 - Image Current: 180 vs 115 mW/m/beam (DR includes 30mW/m/beam for BPM bellows)
 - Synchr. Rad.: consistent within 4% (175 vs 173 mW/m/beam)
 - Electron cloud: new WP2 calculations should be used instead.
- Precision of scaling laws
 - Some heat loads are not scalable

Estimated as main impact: -36% of IC values (-700W/sector@4.5-20K)

- SAMs are approximated using MQs. However,
 - SAMs present no synchr. rad.
 - The "drift" part differs between SAMs

Calculation-based values (SR, IC & e-cloud) can be provided by WP2. A tool is available and can generate calculated values for all magnets at any set of beam-parameters.

Proposed update of WP9 Input Data

WP2 Input

Heat Load Studies v.2

(concluded)

EDMS 1610791 v0.3

Heat Load Data

Recollected from official sources:

• HLWG 2000

From DR

for LHCn

- LHC Design Report
- LHC Project Note 140

EDMS 1719021 v0.1

Preliminary

Beam Parameters / Scaling Laws

Source of input data

_	Heat Load Mechanism	Scaling Factor
	Heat-In leaks	Χ
	Resistive heating	Χ
	Synchr. Rad.	Χ
1	Image Current	Χ
	Photo-el. Effect	Χ
	Beam Scattering	Χ
	Sec. particle losses	Χ

EDMS 1610791 v0.4

Heat Load Studies v.3

Heat Load Data

Recollected from official sources

(new version)

& WP2 input

- HLWG 2000
- LHC Design Report
- LHC Project Note 140

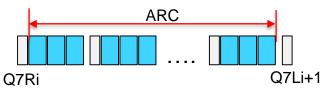
EDMS 1719021 v0.3

Beam Parameters / Scaling Laws

Source of input data

	Bource					
	Heat Load Mechanism	Scalingg Factor	Calc.			
From DR	Heat-In leaks	Х				
for LHCn	Resistive heating	X				
	Synchr. Rad.		X			
Provided by WP2	Image Current		X			
Dy VVI Z	Photo-el. Effect		X			
tbd	Beam Scattering	Χ				
(DR for now)	Sec. particle losses	Χ				

Scaling Factors will be provided, but are for information only.


Matching the heat load tables between WP2 & WP9

WP2 report on heat loads (CERN-ACC-2016-0112) (for IRs only)

Name	Length	Field	Chamber	Impedance	e-cloud	Total
		config.		(T_BS=20 K)	(SEY=1.3/1.1)	(SEY=1.3/1.1)
Q6R2	12.0 m		BSMQ_1	9.1 W	191.7/0.8 W	200.8/9.9 W
MQML.6R2.B1	4.8 m	quad	BSMQ_1	3.7 W	111.9 W/0.2 W	
MQM.6R2.B1	3.4 m	quad	BSMQ_1	2.6 W	79.3 W/0.1 W	
MCBCH.6R2.B1	0.9 m	dip	BSMQ_1	0.7 W	$0.1\mathrm{W}/0.1\mathrm{W}$	
Drifts	2.9 m	drift	BSMQ_1	2.0 W	$0.5\mathrm{W}/0.5\mathrm{W}$	

For information only. Values used since averaged value. for analysis Q6R2 (12.0 m) Total Av. Power (2 beams) density Source [mW/m/beam] Synchrotron Radiation 0.0 0.0 Image Current 9.1 379.2 Electron cloud 191.7 7987.5 200.8 8366.67 Total

- WP2 report is a very good basis.
 Tables for the other operational scenarios needed.
- Twin-document for ARCs needed.
 - ARC will be defined as "magnet string from first to last dipole"

ARC will be treated as a single element

- Discretization would introuduce errors for synchr. radiation.
- Average values for the estimation of standard half cells.

RAW data will be exchanged as .cvs file (comma-separated values)

