Progress in the Calculation of Collider Processes

Thomas Becher, University of Bern

CHIPP meeting 2009, Seminarhotel Appenberg, Aug. 24-25, 2009

Progress in the Calculation of Collider Processes

since August 1st

Thomas Becher, University of Bern

CHIPP meeting 2009, Seminarhotel Appenberg, Aug. 24-25, 2009

INTRODUCTION AND APOLOGIES

- I will not try to review all high-energy theory activities in Switzerland. For the talk to be at least semi-coherent, I will focus on the area of perturbative calculations of collider processes at high energies:
 - strong effort in Switzerland,
 - relevant for LHC,
 - several interesting new developments in the past few years.

PREDICTIONS FOR THE LHC

- Precise predictions are crucial for the physics program at the LHC.
 - QCD effects present the main challenge:
 - rich phenomenology, produces backgrounds to many new physics signals,
 - large coupling constant, leading order perturbation theory is often not sufficient,
 - need to control non-perturbative effects (hadronisation, PDFs, ...).
 - LHC: higher energy and luminosity → higher precision and higher multiplicity final states.

CHALLENGES

- Many loops
 - NNLO to Higgs production
 - NNLO corrections to $e^+e^- \rightarrow 3$ jets
 - Towards top production at NNLO
- Many legs
 - Unitarity methods, recursion relations
- Many scales
 - Effective theory calculations and resummation of large perturbative logarithms

many legs

MANY LEGS @ NLO

- A pressing problem in pQCD are NLO calculations of processes with high multiplicity final states
 - pp $\rightarrow \ge 4$ jets, pp $\rightarrow (W, Z) + \ge 3$ jets, pp $\rightarrow (W W, W, W, Z, WW) + \ge 2$ jets, ...
- Obtaining the NLO description is important because
 - NLO corrections are larger for high-multiplicity final states,
 - they become more abundant at the LHC, and
 - such final states are backgrounds to many New Physics searches.

MANY LEGS

- Standard Feynman diagram approach to perturbative calculations becomes increasingly difficult:
 - 1. Number of diagrams grows factorially with the number of external legs.
 - 2. Passarino-Veltman reduction to scalar integrals produces large number of terms and is numerically unstable when external momenta are linearly dependent.
- Two approaches
 - improve traditional method, in particular tensor reduction,
 - abandon diagrammatic technique in favor of an approach based on recursion relations and unitarity.

NEW APPROACH: RECYCLING

- At tree level, recursion relations provide an efficient way to calculate processes with large multiplicites
 - avoids factorial growth in time
- Use recursion relations and generalized unitarity to construct one-loop amplitudes. Bern et al., Britto, Cachazo and Feng. Simple numerical implementation: Ossola, Padadopoulos and Pittau.
 - Recycles trees into loops!
 - Initially, only part of the answer could be obtained. Elegant construction of missing rational part provided by Ellis, Giele, Kunszt, Melnikov '08

2->4 AT HADRON COLLIDERS

- This year, the first full results for $2 \rightarrow 4$ processes at hadron colliders were obtained.
 - $pp o t ar t \, b ar b$ Bredenstein, Denner, Dittmaier and Pozzorini. Important background to $pp o t ar t \, H$
 - Highly optimized diagrammatic calculation
 - $pp o W + 3 ext{ jets}$ by two groups: Ellis, Melnikov and Zanderighi; Black Hat Collaboration: Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre
 - based on unitarity and recursion relations. First calculation is based on method by Ellis, Giele, Kunszt and Melnikov

TEVATRON PREDICTIONS

 $E_{T,j3}$

- Comparison is complicated by the fact that the jetalgorithm used by CDF is not infrared safe.
 - Introduces hard-to-estimate systematical uncertainty into comparison with theory.

many loops

NNLO CALCULATIONS

- Only a handful of processes are known at NNLO, in particular for *fully differential* cross sections
 - Higgs boson production Anastasiou, Melnikov and Petriello '04,
 - Drell-Yan lepton pair production Melnikov and Petriello '06
 - $e^+e^- \rightarrow 2$ jets Anastasiou, Melnikov and Petriello '04, Weinzierl '06
 - $e^+e^- \rightarrow 3$ jets Gehrmann, Gehrmann-De Ridder, Glover and Heinrich '07, Weinzierl '09

HIGGS PRODUCTION

- Recent theoretical developments
 - Faster codes, suitable for detailed phenomenological studies Anastasiou, Dissertori, Stöckli '08; Grazzini '08
 - Two-loop $gg \rightarrow h$, H amplitudes in the MSSM Anastasiou, Boughezal, Petriello '08
 - Effective theory analysis of the total cross section, allorder resummation of dominant corrections to $gg \rightarrow H$ form factor Ahrens, TB, Neubert and Yang '08
 - Calculation of mixed QCD-electroweak corrections Anastasiou, Beerli, Daleo '08
 - Recalculation of finite heavy-quark mass effects Anastasiou, Bucherer, Kunszt '09

HIGGS PRODUCTION

Updated predictions for the NNLO total production cross section by several groups.

	MRST01	MRST04	MRST06	MSTW08
Tevatron $m_H=170 \text{ GeV}$	0.3833	0.3988	0.3943±5%	0.3444±10%
LHC,10 TeV m_H =120 GeV	28.9	29.9	32.6	35.4

Anastasiou, Boughezal, Petriello '08

- Detailed phenomenological studies of NNLO QCD effects in $H \to W^+ W^- \to \ell^+ \nu \ell^- \bar{\nu}$
 - in the Tevatron search Anastasiou, Dissertori, Grazzini, Stöckli, Webber '09
 - at the LHC Anastasiou, Dissertori, Stöckli, Webber '08

$e^+e^- \rightarrow 3$ JETS @ NNLO

Gehrmann, Gehrmann De Ridder, Glover, Heinrich'07 Weinzierl '09

- Implemented in fixed order event generator. Can be used for NNLO evaluation of event shapes.
- Used to determine α_s from LEP data:

$$\alpha_s(M_{\rm Z}^2) = 0.1240 \pm 0.0008 \,({\rm stat}) \pm 0.0010 \,({\rm exp}) \pm 0.0011 \,({\rm had}) \pm 0.0029 \,({\rm theo})$$

Even at NNLO perturbative uncertainty dominates.

$e^+e^- \rightarrow 3$ JETS @ NNLO

Gehrmann, Gehrmann De Ridder, Glover, Heinrich'07 Weinzierl '09

rator. Can be apes.

Used to determine as from LEP data

$$\alpha_s(M_{\rm Z}^2) = 0.1240 \pm 0.0008 \,({\rm stat}) \pm 0.0010 \,({\rm exp}) \pm 0.0011 \,({\rm had}) \pm 0.0029 \,({\rm theo})$$

Even at NNLO perturbative uncertainty dominates.

$e^+e^- \rightarrow 3$ JETS

- Recent progress
 - Calculation of NLO electroweak corrections Denner, Dittmaier, Gehrmann, Kurz '09;
 - New fit including NLL resummation Dissertori, Gehrmann, Gehrmann-De Ridder Heinrich, Luisoni, Stenzel '09

$$\alpha_s(M_{\rm Z}) = 0.1224 \pm 0.0009 \,({\rm stat}) \pm 0.0009 \,({\rm exp}) \pm 0.0012 \,({\rm had}) \pm 0.0035 \,({\rm theo})$$

- without resummation NNLO value is 0.1228
- NLL result has slightly larger uncertainty

TOP PRODUCTION @ NNLO

So far, Tevatron has been the only source, but in the future the LHC will produce millions of $t\bar{t}$ pairs.

$$\sigma_{t\bar{t}}^{\rm NLO}({\rm LHC}, m_{\rm top} = 171 {\rm GeV}) = 875^{+102(11.6\%)}_{-100(11.5\%)}({\rm scales})^{+30(3.4\%)}_{-29(3.3\%)}({\rm PDFs}) \, {\rm pb}$$
Cacciari et al. '08

- Efforts are underway to increase the accuracy of the theoretical prediction to NNLO:
 - (1-loop)² Anastasiou, Mert Aybat '08, [and other papers!]
 - lacksquare 2-loop qar q o tar t and gg o tar t numerically Czakon '08
 - Leading-color $q\bar{q} \to t\bar{t}$ amplitudes analytically Bonciani, Ferroglia, Gehrmann and Studerus '09

many scales

EFFECTIVE FIELD THEORY

- Fixed order calculations become unreliable in situations where several disparate scales are relevant. Higher order corrections enhanced by large logarithms of scale ratios.
- Effective field theories can be used to
 - expand in powers of small scale ratios,
 - resum the enhanced higher-order corrections.
- Many examples of EFTs in particle physics...
 - Euler-Heisenberg action, Nonrelativistic EFTs, Fermi theory, Heavy-Quark Effective Theory, ...
- ... but not (yet!) a common tool in collider physics

SOFT-COLLINEAR EFFECTIVE THEORY

Bauer, Pirjol, Stewart et al. 2001, 2002; Beneke et al. 2002

- EFTs split physics into high- and low-energy part. In collider processes, we have an *interplay of three momentum regions*
 - Hard

- } high-energy
- Collinear
- low-energy part

- Soft
- Correspondingly, EFT for such processes has two low-energy modes:
 - Collinear fields describing the energetic partons propagating in a given direction, and
 - soft fields which mediate long range interactions among them.

RESUMMATION FOR THRUST

$$T = \max_{\mathbf{n}} \frac{\sum_{i} |\mathbf{p}_{i} \cdot \mathbf{n}|}{\sum_{i} |\mathbf{p}_{i}|} \qquad 1 - T \approx \frac{M_{1}^{2} + M_{2}^{2}}{Q^{2}}$$

- The perturbative result for the thrust distribution contains logarithms $\alpha_s^n \ln^{2n} \tau$, where $\tau = 1$ -T.
 - Near the end-point $\tau \to 0$ these logarithmic terms dominate.
- Using SCET one can derive a factorization theorem

$$\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = H(Q^2, \mu) \int dM_1^2 \int dM_2^2 J(M_1^2, \mu) J(M_2^2, \mu) S_T(\tau Q - \frac{M_1^2 + M_2^2}{Q}, \mu)$$

$$Q^2 \gg M_1^2 \sim M_2^2 \sim \tau Q^2 \gg \tau^2 Q$$
hard collinear soft

scale dependence governed by RG

RESUMMATION FOR THRUST

$$T = \max_{\mathbf{n}} \frac{\sum_{i} |\mathbf{p}_{i} \cdot \mathbf{n}|}{\sum_{i} |\mathbf{p}_{i}|} \qquad 1 - T \approx \frac{M_{1}^{2} + M_{2}^{2}}{Q^{2}}$$

- Prediction for event-shape variables dominated by perturbative uncertainty even at NNLO.
 - Traditional methods Catani et al. '93 allowed resummation to NLL but not beyond.
- Using RG evolution in SCET we were able to derive NNNLL resummed distribution matched to NNLO TB and Schwartz '08. Fit to LEP data gives

$$\alpha_s(m_Z) = 0.1172 \pm 0.0010(\text{stat}) \pm 0.0008(\text{sys}) \pm 0.0012(\text{had}) \pm 0.0012(\text{pert})$$

= 0.1172 ± 0.0022 .

most precise α_s at high energy. theory unc. no longer dominant

RESUMMED VS. FIXED ORDER

- For PDG value $\alpha_s(M_Z)=0.1176$
- This is the region relevant for α_s determination

HIGGS PRODUCTION

Ahrens, TB, Neubert, Yang '08

- Includes soft-gluon resummation, but the main effect arises from unconventional scale setting in hard function.
- RG improved NNLO result is 8% larger than fixed order (13% at Tevatron).

TOWARDS N-JET PROCESSES

- Many collider physics applications of SCET in the past few years. Resummations up to N³LL, however only for two jet observables, e.g.
 - Drell-Yan rapidity dist.

- TB, Neubert, Xu '07
- inclusive Higgs production
- Idilbi, Ji, Ma and Yuan '06; Ahrens, TB, Neubert, Yang '08

thrust distribution in e^+e^-

- TB, Schwartz '08
- Important to extend method to more complicated processes
 - resummation should be more relevant for more exclusive quantities.
 - parton showers can be used at LL level.

IR SINGULARITIES OF QCD AMPLITUDES

TB, Neubert '09

- Simple conjecture for all-order structure of infrared singularities of massless *n*-point amplitudes:
 - governed by anomalous dimension Γ of n-jet operators in SCET
 - \blacksquare stringent factorization constraints on form of Γ .
 - have performed order-by-order analysis of the constraints to three-loop order.
- Expression Knowledge of the anomalous dimension will allow us to perform Sudakov resummation for *n*-jet processes
 - \blacksquare have explicit result for Γ for NNLL resummation

NKLL FOR N-JET PROCESSES

- The necessary ingredients are
 - hard functions: from fixed-order results for onshell amplitudes. New unitarity methods allow calculation of one-loop amplitudes with many legs (→ NNLL resummation)
 - jet function: imaginary part of two-point function, inclusive jet function is known to two loops.
 - soft function: matrix element of Wilson lines, one-loop calculation is comparatively simple.
- Then resum log's of different scales using RG evolution.

AUTOMATIZATION

- in the longer term, this will hopefully lead to automated higher-log resummations for jet rates
- goes beyond parton showers, which are only accurate at LL, even after matching
- predicts jets, not individual partons

SUMMARY

- First full results for $2 \rightarrow 4$ processes at NLO
 - $pp \rightarrow t\bar{t}b\bar{b}$
 - $pp \rightarrow W + 3 \text{ jets}$
- Updated NNLO predictions for Higgs production, detailed phenomenological studies.
- Event shapes in e^+e^- : NNLO QCD, NLO electroweak effects, N³LL resummation for thrust, ...
 - ... we are catching up with LEP precision.
- On track to perform higher-log resummation for n-jet processes at LHC using RG evolution SCET.