

CHIPP Plenary Meeting in Appenberg August 24-25, 2009

- MICE The Muon Ionization Cooling Experiment

Jean-Sebastien Graulich, Univ. Genève

- o Introduction: Aims And Concept
- o Design
- o Infrastructure: Hall, Target and Beamline
- o Cooling Channel: Absorbers and RF
- o Detectors: Spectrometer and PID
- o The Electron-Muon Ranger
- o Conclusion

Aims

Slide 2

Muon Storage Ring

1.5 km

Concept

Ionization Cooling

- THE only realistic solution for Muon Beam Cooling
- Trade off between dE/dX cooling and Multiple scattering heating

$$\frac{d\varepsilon}{dz} \approx \frac{\varepsilon}{E_{\mu}\beta^{2}} \frac{dE_{\mu}}{dz} + \frac{\beta_{\perp}}{2m\beta^{3}} \frac{(13.6MeV)^{2}}{E_{\mu}X_{0}}$$

-> Low Z material and low β_T beam

Observables

- Position (x, y, z) and Momentum (p_x, p_y, p_z)
 - before and after the Cooling Channel
- Single Particle measurement necessary:
 - Small emittance change -> need precision
 - Incoming muons not in phase with the RF
- We expect ~10% cooling for large ε beam:

$$\Delta \varepsilon / \varepsilon = -\Delta p / p \cdot (1 - \varepsilon_0 / \varepsilon)$$

- ~ 5 % momentum loss per absorber
- Equilibrium emittance for LH2: $\epsilon_0 \sim 2.5 (\pi)$ mm-rad (acceptance for v-Fact 15 30 (π) mm-rad)
- Measure $\Delta \epsilon$ to 1% -> measure ϵ to 0.1%

MICE Design

MICE Design-PID

MICE Beam Line

MICE Beam Line

D2 and Second Triplet in Decay Solenoid Area

Decay Solenoid:

- Long repair needed
- Cool down to 4.5 K
 reached in April 09
- 48 h power test(870 Amp; 5 T)in August 09

Third Triplet (Q7-Q9)
+ TOF and KL

MICE Target

- ◆ A 1 mm thick Ti target is dipped into the ISIS proton beam
 - Intercepts the beam in the last ms of the acceleration cycle
 - 80 g acceleration achieved
 - Up to 1 Hz rate repetition rate
- Original design found unstable
 - Engineering improved
 - New Target System being installed now

Cooling Channel

Liquid Hydrogen Absorbers

- Production of the first absorber started
- SC Focus Coils integrated in the design
- Delivery expected for end 2010

RF Cavity Prototype

RF Cavities

- 201,25 MHz
- Copper-niobium
- 4 cavities per module + 1 large SC Coupling coil
- Peak input RF power ~ 4.6 MW per cavity
- Gradient: ~ 16 MV/m
- Production has started Delivery end 2011

Sci-Fi Tracker

- 5 stations of scintillating fibers
- 3 projections per station
- Two layers, each 350 μm diameter
- Minimize material in beam line
 Few photons
 VLPC readout (same as DO)
 - QE = 85%, gain = 50000, dedicated FEE
- Simulated Performance @ B ~ 4T

 ΔP_T = 1.5 MeV/c; ΔP_Z = 3 MeV/c for 200 MeV/c muons, mean P_T

Spectrometers

- The two trackers are operational
 - Performances confirmed with cosmics
 - Serious problems with the two solenoids
 - Production finished BUT
 - One failed to cool down and needs repair
 - The second failed during power test and revealed a weakness in the design
 - Significant delay resulted

PID Detectors

CKOV installed at RAL

CAUTION! HV ON

TOF1 installed at RAL

Two threshold Cherenkov

- Aerogel radiator: n = 1.07 and 1.12
- Light reflected toward four 8" PMTs
- Provide pion rejection at large momentum and clean low momentum e⁺ sample

Three TOF Stations

- Crossed scintillator slabs, 1" thick
- Conventional PMTs
- TOFO and TOF1 already commissioned
 51 and 62 ps resolution resp.
- TOF0-TOF1 allows π rejection
- TOF1-TOF2 allows e⁻ rejection

First muons observed

Time of Flight spectrum between TOFO and TOF1 after calibration and time walk corrections. The red spectrum is obtained with the positron beam at 100 MeV/c.

It is used to fix the horizontal scale. The blue spectrum is obtained at 300 MeV/c. The positron, muon and pion components are clearly separated. The shift between muon and pion peeaks corresponds to the difference in time of flight at 300 MeV/c.

KL installed at RAL

E-M Calorimeter

- Electron-muon separation downstream
- Made of two parts:
- KL (KLOE Like)
 - 4 cm thick preshower
 - Made of scintillating fibers interleaved with grooved lead foils
- ◆ EMR (Electron-Muon Ranger)
 - 70 cm of fully active plastic scintillator
 - Measures energy, range and track integrity

The Electron Muon Ranger

- Major Contribution from Univ. of Geneva:
 - Conceptual Idea, Simulation, Design, Electronics and Construction
- In Collaboration with Como/Trieste for the front end and readout electronics
- 3000 digital channels read out by Multi-Anode PMTs
- 50 layers with one common charge readout each
- First delivery in spring 2010

MICE Schedule

Conclusion

- MICE is running!
- Commissioning of PID detectors has started in 2008
- Muons have been seen in the beam at RAL
- Decay Solenoid is operational
 - -> Muon beam expected for this fall
- A new target system is under installation
- Spectrometer solenoid is delayed to 2010
- Univ. of Geneva is developing a highly segmented fully active scintillator (EMR)
- First LH₂ Absorber expected for Mid 2011
 - -> Observation of Ionization Cooling
- Final results wih RF in 2012-2013