

Results and plans for LAr R&D in Switzerland

Filippo Resnati Institute for Particle Physics, ETH Zurich, Switzerland

> CHIPP Plenary Meeting 24-25 August 2009 Appenberg Switzerland

ETH

Introduction

Introduction

- LAr R&D
- LEM-TPC
- ArDM
- ArgonTube & LAr laser ionization
- KEK
- collaboration
- Next plans at CERN
- Summary

Next generation neutrino physics, nucleon decay (A. Rubbia talk) and direct Dark Matter search experiments (L. Baudis talk) require:

- Very large massive detectors (hundreds kiloton-scale for neutrino and proton decay and ton-scale for DM).
 - Low background (underground).
 - Good energy resolution.
- Low energy threshold.
- Particle identification capabilities.

s at R&D needed towards giant detectors:

- Readout method (charge amplification in double phase, proof of principle is achieved).
 - High voltage system (successful test of small scale Greinacher circuit).
 - LAr purity for non-evacuable dewars.
 - Readout electronics (warm /cold solutions).
 - LAr tank (LNG technique).

LAr R&D overview

Overview of the LAr R&D in Switzerland. Introduction

LAr R&D

LEM-TPC

ArDM

ArgonTube & LAr laser ionization

KEK collaboration

CERN

Summary

Ongoing:

- LEM-TPC test setup (ETHZ).
- ArDM experiment (ETHZ, UZH, University of Granada, CIEMAT, University of Sheffield, Andrzej Soltan Inst.).
 - ArgonTube and UV laser LAr ionization (UniBe).

Near future (in collaboration with KEK):

- 250 Lt TPC (ETHZ, KEK).
- Next plans at 80 Lt LEM-TPC (ETHZ).
 - Purging test of $\sim 6 \text{ m}^3$ (ETHZ).

Future (ETHZ, KEK, ...):

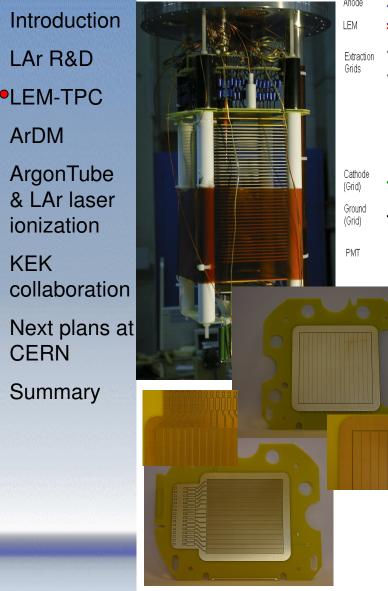
- Test beam (e⁻, π and μ) campaign.
- 1 kton full engineering demonstrator for giant detectors.

ETH Double phase LEM-TPC

2 mm

~1 cm

~1 cm


20 cm

A.Badertscher et al., IEEE Nuclear Science Symposium Conference Record, (2008), 1328.

Ar level

5 mm

Field Shapers

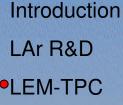
It is a LAr TPC (10x10x20 cm³) with charge amplification readout by means of Large Electron Multiplier (LEM) devices in Ar vapour.

ETH Institute for Particle Physics

LEM:

- mm-size hole charge amplifier.
- Standard PCB methods.
- Double sided copper-cladded FR4.
- Precision hole by drilling.
- Thickness: 0.8-1.6 mm.
- Holes diameter: 500 μ m.
- Pitch: 800 $\mu m.$
- Segmented readout: 2x16 strips (6 mm wide).

Aim:

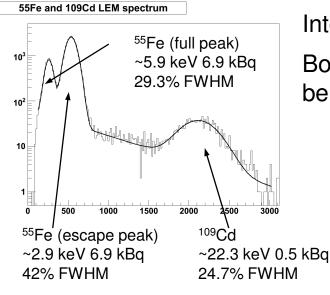

• Amplification of the charge from a LAr TPC (lower the energy threshold, compensate the charge loss in long path, increase the S/N). **Challenges:**

• Controlled avalanches in pure argon gas.

E

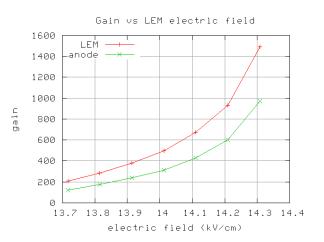
LEM-TPC results

Pure argon gas operation, room temperature, 1.2 bar. Double stage LEM and anode readout.


ArDM

ArgonTube & LAr laser ionization

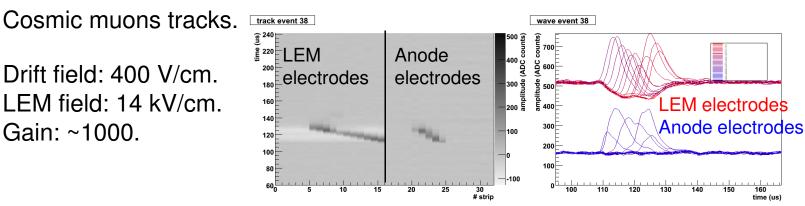
KFK collaboration


Next plans at CERN

Summary

Internal ⁵⁵Fe and ¹⁰⁹Cd sources.

Both anode and LEM signals can be used for the energy evaluation.



ETH Institute for

Particle Physics

160

time (us)

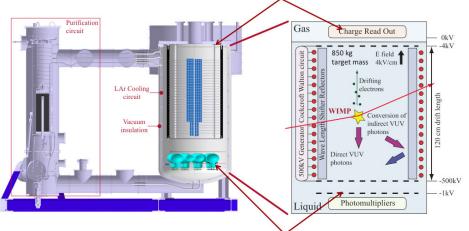
ETH

LEM-TPC results

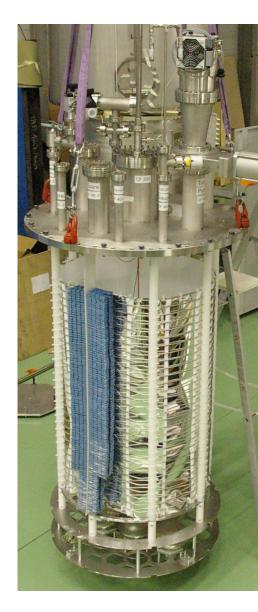
ETH Argon Dark Matter experiment ⁴

See L. Baudis talk tomorrow.

Introduction


- LAr R&D
- LEM-TPC
- •ArDM
- ArgonTube & LAr laser
- ionization
- KEK collaboration
- Next plans at CERN
- Summary

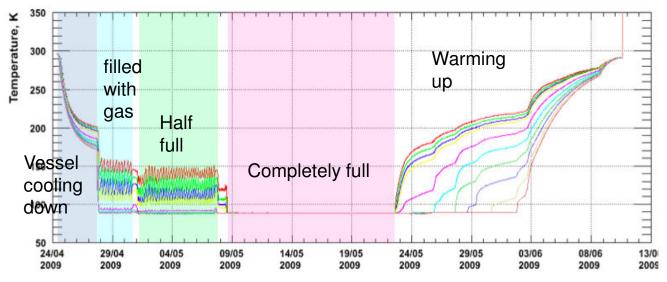
ArDM (CERN recognized experiment RE18) is a double phase pure argon TPC (850 kg active volume) for the direct detection of Dark Matter. **Aim:**


- Detect nuclear recoils induced by WIMPs. **How:**
- primary scintillation light (cryogenic PMTs).
- ionization charge (LEM readout).

Challenges:

- High voltage for the long drift.
 - Low threshold for the scintillation light.
- High charge gain in pure argon.

CHIPP Plenary Meeting - Appenberg 24 August 2009


ETH Institute for Particle Physics

ETH

ArDM status

- Introduction
- LAr R&D
- LEM-TPC
- •ArDM
- ArgonTube & LAr laser ionization
- KEK collaboration
- Next plans at CERN
- Summary

- First filling with LAr in May 2009.
- More than 3 weeks of data taking.
- lans at LAr purity stable without purifying.
 - Analysis is ongoing:

Light yield (preliminary) > 0.5 phe/keV_{ee} (7/14 PMT installed with different WLS coatings).

ArDM next test is planned for November 2009. Possible underground laboratories for the end of 2010:

- Canfranc, Spain (2450 mwe).
- SUNLAB, Poland (2200 mwe).
- Prahova salt mine, Romania (600 mwe).

ETH **ArgonTube & laser ionization**

ETH Institute for

ArgonTube is a 5 m long LAr TPC in Bern. Aim:

- Proof the possibility to drift electrons for very long distances (simulate 20 m).
- Study the electron diffusion. **Challenges:**
 - LAr purity.
 - High Voltage supply (Greinacher ~500 kV).

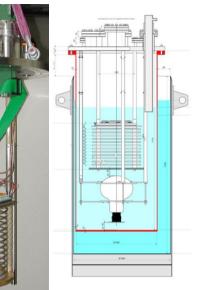
& LAr laser ionization

KEK collaboration

Introduction

LAr R&D

LEM-TPC


ArgonTube

ArDM

Next plans at CERN

Summary

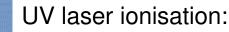
B. Rossi et al., arXiv:0906.3437

The detector is a LAr TPC (20x20x26 cm³) with wires readout (64+64 channels). Tracks are produced by UV laser (266 nm) multi-photonic ionization. Aim:

- New monitor of the free electron lifetime.
- Calibrate the TPC with the laser (no Landau fluctuations).

Challenges:

New ionization technique.



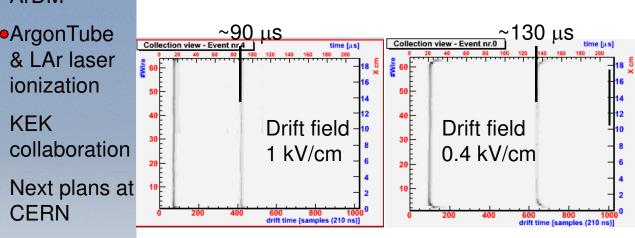
UV laser ionization results

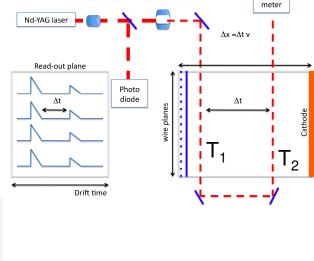
Joule

CCD

LAr R&D

LEM-TPC

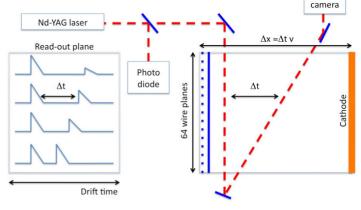

ArDM


KEK

CERN

Summary

- Two tracks perpendicular to the drift path Introduction $(T_1 \text{ and } T_2)$.
 - e^{-1} lifetime ($\tau_{e^{-1}}$) is measured by T_2/T_1 ratio.
 - A more precise measure of τ_{e} is done by changing the drift field.



Diaphragm

Attenuator

- New UV laser configuration. Two tracks, one parallel to the drift path and one inclined:
 - Precision measurement of the electron lifetime without changing the drift field.
 - Not only R&D: measure the multiphotonic ionization cross section.

ETH In collaboration with KEK

Purging test without pumping the vacuum in 200 Lt vessel.

Introduction Safety Bulb 25 LAr R&D Video Camera Oxygen Concentration (%) (0.3 bar) •'340 Ľ/h 200 L/h 20 LEM-TPC upper monitor O. Monitor 3 **ArDM** O Monitor 15 Liq. Ar Bubbler ArgonTube 10 & LAr laser Flow 5 ionization Meter O Monitor •KEK 20 40 60 collaboration lower monitor Time (minutes) Gas Ar Next plans at

Purity acieved: ~3 ppm (O_2) after 10 volume changes.

ETH Institute for

Particle Physics

250 Lt cryostat from MEG experiment sent to Japan:
Transfer technology for building LAr TPC of ~500 ch.
LAr TPC on charged particles beam
(PID performance, calorimetry, vertex reconstruction).

CERN

Summary

Planned tests at CERN

Vacuumless purge test of a 6 m³ dewar. Aim: Introduction

- Proof the possibility to achieve high LAr purities (~ppm O_2 equivalent). **Challenges:**
 - Remove the air by "flushing" argon (new technique on large scale vessels).
 - Outgassing of the material inside.

80 L double phase pure argon LEM-TPC, being designed, to be tested on e^{-} , π and μ collaboration beam. Next plans at

- Aim:
- Summary

LAr R&D

LEM-TPC

ArgonTube & LAr laser

ionization

ArDM

KFK

CERN

- Test the largest (~50x50 cm²) available LEM.
 - Test imaging capabilities on interaction vertex reconstruction (refine the spatial resolution, strip width < 3 mm). **Challenges:**
 - Largest LEM ever produced.

Summary

Introduction

LAr R&D

LEM-TPC

ArDM

ArgonTube & LAr laser ionization

KEK collaboration

CERN

Summary

Extensive R&D in Switzerland towards next generation liquid argon detector for neutrino physics, proton decay and direct DM search.

All the R&D programs are complementary:

LAr-TPC embedded in magnetic field (not covered here)

address the sign to the charge.

Double phase pure argon LEM-TPC

 New technique for amplification of charge signals from LAr TPC. **Argon Dark Matter Experiment**

Surface tests ongoing, underground for the end of 2010.

Next plans at UV laser LAr ionization

New TPC calibration and LAr purity monitor techniques.

ArgonTube

Study very long electron drift.

ETHZ-KEK collaboration

- Vacuumless purging tests.
- LAr detector test beam campaign