Little Higgs Models

Pedro Schwaller

Institute for Theoretical Physics University of Zurich

CHIPP Annual Plenary Meeting 2009 Appenberg, Switzerland August 25, 2009

Outline

Introduction to Little Higgs Models

Collider Signals of T-parity Violation

A Model with Exact Dark Matter Parity

Little Higgs models

How to build a little Higgs model? Arkani-Hamed et al 2001, 2002

- Make Higgs boson the Goldstone boson of a global symmetry group *G*
- Ensure that all couplings (e.g. gauge couplings, Yukawa couplings) preserve at least a subgroup of *G*
- Coupling relations (previous slide) will automatically be fulfilled

To achieve this we have to

- Add a partner *T* for the top quark
- Add partners for the electroweak gauge bosons, W_H , Z_H and A_H

The model is characterized by the scale $f \sim 1$ TeV where G is spontaneously broken! Most new particles get O(f) masses

Little Higgs models and T-parity

T-parity: Cheng, Low 2003, 2004

- Z₂ (parity) symmetry of scalar and gauge lagrangian
- Extended to symmetry of full model by adding mirror fermions: heavy partners for the SM quarks and leptons
- All new (heavy) particles are parity-odd
- Lightest T-odd particle stable: dark matter candidate!

Little Higgs models and T-parity

T-parity: Cheng, Low 2003, 2004

- Z₂ (parity) symmetry of scalar and gauge lagrangian
- Extended to symmetry of full model by adding mirror fermions: heavy partners for the SM quarks and leptons
- All new (heavy) particles are parity-odd
- Lightest T-odd particle stable: dark matter candidate!

Pheno Overview

At colliders:

- Pair production of T-odd particles via standard processes
- Decay to lightest T-odd particle: Jets (leptons) + missing energy signals

But T-parity is broken

Little Higgs models are effective theories of some strong dynamics \rightarrow should include WZW term Γ_{WZW} into effective Lagrangian Hill, Hill, 2007

Problem:

- T-parity implemented as $\Sigma \to \Sigma^{\dagger}$, $A_L \leftrightarrow A_R$
- The WZW term is odd under this operation:

 $\Gamma_{WZW}(\Sigma, A_L, A_R) \rightarrow -\Gamma_{WZW}(\Sigma, A_L, A_R)$

and therefore leads to T-parity violating interactions.

The leading effect is the decay of A_H into pairs of *W*- or *Z*-bosons:

Decays of A_H

Total width, including:

- Real $A_H \rightarrow W^+ W^-$, ZZ decays
- Virtual $A_H \rightarrow VV^*$, V^*V^* decays
- One-loop contributions $A_H \rightarrow f\bar{f}$

Branching Fractions:

- Below f ~ 1000 GeV fermionic decays dominate
- Of fermionic decay modes:
 - ~ 10% charged leptons
 - ~ 20% neutrinos

Collider (LHC) Phenomenology

Production cross section of mirror quark pairs at LHC, in picobarn:

Branching Fractions for the decay $u_H \rightarrow uV_H$, with

•
$$m_{q_H} = \sqrt{2}\kappa f$$

•
$$\kappa = 0.5$$

For larger κ , W_H and Z_H channels more important

Collider (LHC) Phenomenology

A sample process (f > 1 TeV, $m_{q_H} > M_{W_H}$):

- events with 10 or more final states are generic
- look for many jets, a few leptons, and some $\not\!\!\!E_T$
- rare channels like $e^+e^+\mu^-\mu^-+n$ jets may help discriminate from other models

Collider (LHC) Phenomenology

Signal rates (before cuts) for the most probable final states:

f = 750 GeV		f = 1500 GeV	
Final state	$\sigma[fb]$	Final state	$\sigma[fb]$
6 <i>j</i>	994	10 <i>j</i>	8.2
4j + E'	568	8j + l + E	8.4
6j+h	306	6j + ll + E	5.2
$6j + l_*^- + E$	124	$8j + l_*^- + l + E$	1.40

Hard leptons (denoted by l_*) arise from chains containing

 $q_H \rightarrow qW_H \rightarrow qWA_H \rightarrow qlv_lA_H$

• For f larger than 1500 GeV: Hard to separate from background

• Same sign hard lepton signals might help, but have $\sigma < 1 fb$

Can we find a model with an exact dark matter parity?

An exchange symmetry

Remember: The problem was that $\Sigma \to \Sigma^{\dagger}$ is not compatible with Γ_{WZW}

Alternative possibility:

- Assume we have two Goldstone fields, Σ_1 and Σ_2
- The WZW term then given by the sum of both contributions:

 $\Gamma_{WZW} = \Gamma(\Sigma_1, A_L, A_R) + \Gamma(\Sigma_2, A_R, A_L)$

• This term is even under the eXchange symmetry

 $\Sigma_1 \leftrightarrow \Sigma_2 \qquad A_L \leftrightarrow A_R$

\rightarrow New parity symmetry: X-Parity

Pedro Schwaller (ITP Zurich)

Features of the new model

Particle content:

- Gauge boson and fermion content (almost) unchanged
- Second Goldstone field Σ_2 introduced in the scalar sector
- Introduces additional scalar singlets and triplets and a second Higgs doublet

Scalars receive O(f) masses from several sources:

- Explicit mass terms
- One-loop masses from mirror fermion mass and kinetic terms
- One-loop masses from top Yukawa couplings

One Higgs doublet h_1 and a scalar triplet ϕ_a remain light

- EWSB via two Higgs doublet model with heavy second doublet h₂
- h_1 , h_2 aquire vevs with $\langle h_2 \rangle^2 + \langle h_2 \rangle^2 = v^2 = (246 \text{ GeV})^2$
- Yields light SM like neutral Higgs and heavy H^0 , A^0 and H^{\pm}

Electroweak precision tests

Main contributions to T-parameter from

- Moderate custodial symmetry breaking in scalar sector
- Mixing in the top sector, depends on f and mixing parameter R
- Mass splitting of W_H^{\pm} , W_H^0 and of H^0 , A^0 , H^{\pm}

Allowed region in f-R plane, for fixed values of the mass splittings in the Higgs sector:

Note:

New particle masses around 1 TeV allowed! \rightarrow model can be tested at LHC

Signatures

- *A_H* is the lightest parity odd particle and a good dark matter candidate
- Pair production and jets + missing energy signals dominate again

One new distinct signature:

- Light φ_a produced copiously at LHC
- Main decay modes into SM gauge bosons, in particular $\phi_a^0 \rightarrow \gamma \gamma$
- Distinct 4γ + l[±] signals possible, small

Currently under investigation!

Conclusions

- Little Higgs models are an provide an interesting solution to the hierarchy problem
- T-parity is broken in the original models, resulting in interesting phenomenological signatures
- Using exchange symmetries, we built a working little Higgs model with stable dark matter and promising new signals