Krizstian Peters (DESY) & Markus Klute (MIT) 2nd mini-workshop on FCC-ee detector requirements 11/23/2016 #### Introduction - → Request by Gigi, Ariella, and Mogens: Physics motivation for - muon momentum resolution dp/p = 4-2-1x10⁻³ - jet resolution 50, 30, and 20% - photon separation for tau identification - how important is $H \rightarrow \gamma \gamma$? - is PID for charm tagging important? - → Selected a subset of Higgs analysis and analyzed impact of detector performance parameters on measurements - → The following is still work in progress ### **ZH Cross Section** - → Key FCC-ee Higgs analysis - Sister analysis looking for Higgs to invisible decays - → Selecting two leptons, electrons or muons of opposite charge - → Previously investigated by Gigi et al (arXiv:1605.00100) - → Studied impact of electron and muon resolution - → Parametrizations under study $$\frac{\Delta E}{E} = 0.011 + A^* \frac{0.166}{\sqrt{E}}$$, for $|\eta| \le 2.4$ $$\frac{\Delta P}{P} = 0.001 + B^* \frac{P_T}{10^5}$$, for $|\eta| \le 2.4$ Also removed constant terms ### **ZH Cross Section** - → Analysis can further be optimized (not the point here) - → Within the range of the variation of detector parameter, we do not observe changes in analysis performance - results needs further study | Modified Parameter | 1x | 2x | 4x | Constant Removed | | |--------------------|-------|-------|-------|------------------|--| | ZH Electron | 0.47% | 0.45% | 0.48% | 0.48% | | | ZH Muon | 0.47% | 0.47% | 0.48% | 0.48% | | | H to inv Electron | 0.34% | 0.34% | 0.34% | ≤0.34%* | | | H to inv Muon | 0.34% | 0.34% | 0.34% | ≤0.34%* | | $$\frac{\Delta E}{E} = 0.011 + A^* \frac{0.166}{\sqrt{E}}$$, for $|\eta| \le 2.4$ $$=0.011 + A^* \frac{0.166}{\sqrt{E}}$$, for $|\eta| \le 2.4$ $\frac{\Delta P}{P} = 0.001 + B^* \frac{P_T}{10^5}$, for $|\eta| \le 2.4$ *) investigating some issues with fits ## WW and bb coupling - → Investigating vvbb final state - → Di-jet mass and missing mass are discriminating variable - → Checking impact of - jet resolution - calorimeter performance - jet reconstruction algorithm - (charm and gluon tagging capabilities) - → Results of this work will be available in January Missing Mass (GeV) - → Use H→ττ events to study small contribution from pseudoscalar component - → Model using effective Lagrangian $$\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$$ - → Exploring tau spin correlation to measure CP phase - → Several ee and pp collider studies available - e.g. [arXiv:hep-ph/0305082], [arXiv:hep-ph/0204292], [arXiv:hep-ph/0302046], [arXiv:0812.1910] - → Following [arxiv:1308:1094] which shows that Θ is most sensitive variable - \Rightarrow Exploring $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$ → Reproduced previous generator level study | $\sigma_{e^+e^- o hZ}$ | $0.30~\mathrm{pb}$ | |--------------------------------|--------------------| | $Br(h \to \tau^+ \tau^-)$ | 6.1% | | ${ m Br}(au^- o\pi^-\pi^0 u)$ | 26% | | $Br(Z \to visibles)$ | 80% | | N_{events} | 990 | | Accuracy | 4.4° | | | | ee collider $\sqrt{s}=250~{ m GeV}$ $\mathcal{L}=1{ m ab}^{-1}$ [arxiv:1308:1094] - Study is including detector effects and background contributions - → Using ILC-like and CMS-like detector with Delphes Table I: Cut-flow for Zh events and main backgrounds with the ILC detector and a luminosity of 10 ab⁻¹. | Requirement . | Leptonic | | Hadronic | | | |------------------|---------------------|----------------|--------------------------------|-----------------|--| | | $Zh o Z au^+ au^-$ | Zll^a | $Zh \rightarrow Z\tau^+\tau^-$ | ZU^a | | | Object selection | 266 ± 6 | 4506 ± 25 | 3907 ± 24 | 19751 ± 370 | | | Mass cuts | 197 ± 5 | 139 ± 31 | 1995 ± 17 | 724 ± 71 | | | Kinematic cuts | 191 ± 5 | 14.9 ± 9.8 | 1494 ± 15 | 20.9 ± 12.0 | | ^aZZ and Zh events are excluded here. Table II: Same as Table I for CMS detector. | Requirement | Leptonic | Hadronic | | |------------------|--------------------------------|--------------------------------|--| | requirement | $Zh \rightarrow Z\tau^+\tau^-$ | $Zh \rightarrow Z\tau^+\tau^-$ | | | Object selection | 101 ± 4 | 2016 ± 17 | | | Mass cuts | 68.8 ± 3.2 | 545 ± 9 | | | Kinematic cuts | 63.3 ± 3.1 | 223 ± 6 | | ш - → Detector performance has large impact on analysis performance - for 1ab⁻¹ we see 22.7 compared to 4.4 degree - impact on selection efficiency and performance of Θ variable - Mass resolution is leading effect, follow by tau selection - → Work in progress to map this to detector performance ## Higgs to Photons | Uncertainties | HL-LHC* | μ- | CLIC | ILC** | CEPC | FCC-ee | |---------------------------------|---------|------|------|-------|------|--------| | m _H [MeV] | 40 | 0.06 | 40 | 30 | 5.5 | 8 | | Гн [MeV] | - | 0.17 | 0.16 | 0.16 | 0.12 | 0.04 | | g _{HZZ} [%] | 2.0 | - | 1.0 | 0.6 | 0.25 | 0.15 | | gнww [%] | 2.0 | 2.2 | 1.0 | 0.8 | 1.2 | 0.2 | | д ньь [%] | 4.0 | 2.3 | 1.0 | 1.5 | 1.3 | 0.4 | | g _H ^T [%] | 2.0 | 5 | 2.0 | 1.9 | 1.4 | 0.5 | | g _{HYY} [%] | 2.0 | 10 | 6.0 | 7.8 | 4.7 | 1.5 | | g _{Hcc} [%] | - | - | 2.0 | 2.7 | 1.7 | 0.7 | | g _{Hgg} [%] | 3.0 | - | 2.0 | 2.3 | 1.5 | 0.8 | | gнtt [%] | 4.0 | - | 4.5 | 18 | - | - | | gн _{µµ} [%] | 4.0 | 2.1 | 8.0 | 20 | 8.6 | 6.2 | | д ннн [%] | 30 | - | 24 | - | - | - | ^{*} Estimate for two HL-LHC experiments For ~10y operation. Lots of "!,*,?" **Every number comes with her own story.** ^{**} ILC lumi upgrade improves precision by factor 2 ### Higgs to Photons - Ш - Precision measurements, beyond the LHC, will be challenging due to low BR - → Results for LEP3 study assuming CMS performance - Studies just started aiming for results in January (by Kevin Tang (MIT)) - Similar story for H→µµ (by Aimane Ahmed (Saclay)) #### Conclusion - → Studying impact of detector performance on Higgs measurements - → Guided by requests from Gigi, Ariella, and Morgans - → Menu includes - → ZH cross section - → Higgs to invisible decays - → vvbb final state - → 4-jet channel - \rightarrow CP study with $H\rightarrow \tau\tau$ - → Starting with $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$ - → Overall status: work in progress