

Krizstian Peters (DESY) & Markus Klute (MIT)

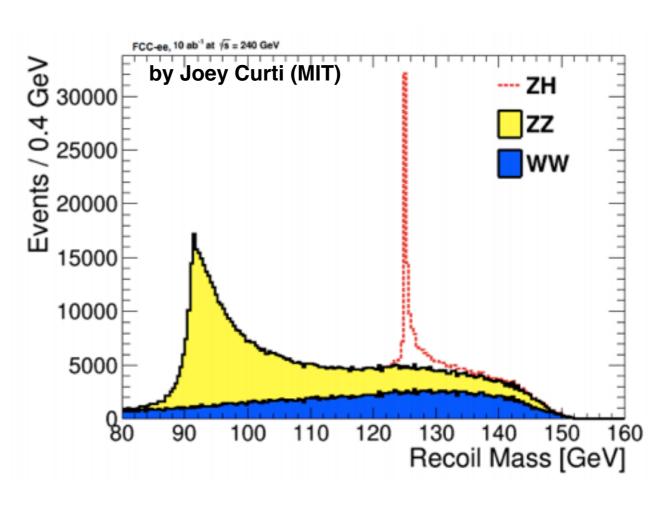
2nd mini-workshop on FCC-ee detector requirements

11/23/2016

Introduction

- → Request by Gigi, Ariella, and Mogens: Physics motivation for
 - muon momentum resolution dp/p = 4-2-1x10⁻³
 - jet resolution 50, 30, and 20%
 - photon separation for tau identification
 - how important is $H \rightarrow \gamma \gamma$?
 - is PID for charm tagging important?
- → Selected a subset of Higgs analysis and analyzed impact of detector performance parameters on measurements
- → The following is still work in progress

ZH Cross Section



- → Key FCC-ee Higgs analysis
 - Sister analysis looking for Higgs to invisible decays
- → Selecting two leptons, electrons or muons of opposite charge
- → Previously investigated by Gigi et al (arXiv:1605.00100)
- → Studied impact of electron and muon resolution
- → Parametrizations under study

$$\frac{\Delta E}{E} = 0.011 + A^* \frac{0.166}{\sqrt{E}}$$
, for $|\eta| \le 2.4$

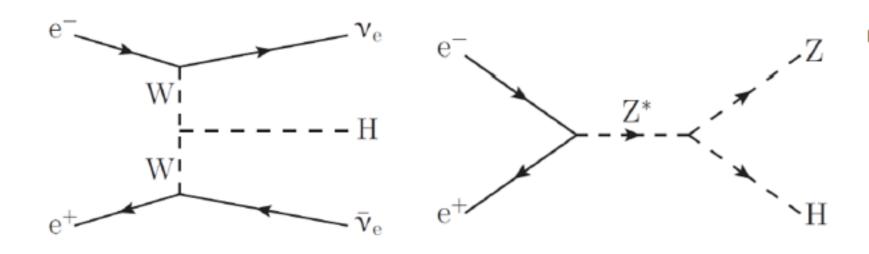
$$\frac{\Delta P}{P} = 0.001 + B^* \frac{P_T}{10^5}$$
, for $|\eta| \le 2.4$

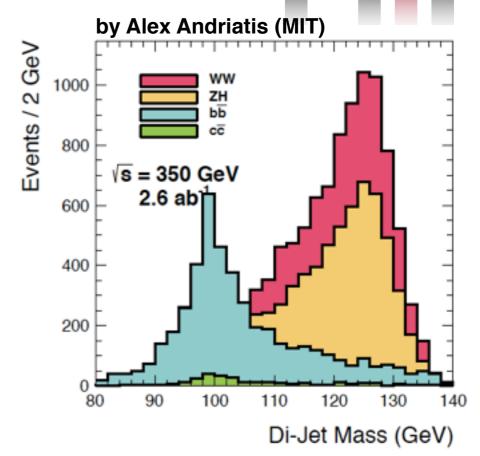
Also removed constant terms

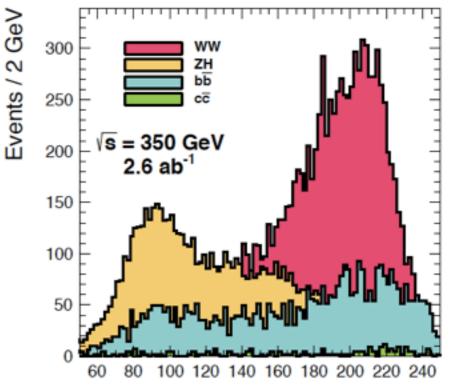
ZH Cross Section

- → Analysis can further be optimized (not the point here)
- → Within the range of the variation of detector parameter, we do not observe changes in analysis performance
 - results needs further study

Modified Parameter	1x	2x	4x	Constant Removed	
ZH Electron	0.47%	0.45%	0.48%	0.48%	
ZH Muon	0.47%	0.47%	0.48%	0.48%	
H to inv Electron	0.34%	0.34%	0.34%	≤0.34%*	
H to inv Muon	0.34%	0.34%	0.34%	≤0.34%*	


$$\frac{\Delta E}{E} = 0.011 + A^* \frac{0.166}{\sqrt{E}}$$
, for $|\eta| \le 2.4$


$$=0.011 + A^* \frac{0.166}{\sqrt{E}}$$
, for $|\eta| \le 2.4$ $\frac{\Delta P}{P} = 0.001 + B^* \frac{P_T}{10^5}$, for $|\eta| \le 2.4$


*) investigating some issues with fits

WW and bb coupling

- → Investigating vvbb final state
- → Di-jet mass and missing mass are discriminating variable
- → Checking impact of
 - jet resolution
 - calorimeter performance
 - jet reconstruction algorithm
 - (charm and gluon tagging capabilities)
- → Results of this work will be available in January

Missing Mass (GeV)

- → Use H→ττ events to study small contribution from pseudoscalar component
- → Model using effective Lagrangian

$$\mathcal{L}_{hff} \propto h\bar{f}(\cos\Delta + i\gamma_5\sin\Delta)f$$

- → Exploring tau spin correlation to measure CP phase
- → Several ee and pp collider studies available
 - e.g. [arXiv:hep-ph/0305082], [arXiv:hep-ph/0204292], [arXiv:hep-ph/0302046], [arXiv:0812.1910]
- → Following [arxiv:1308:1094] which shows that Θ is most sensitive variable
- \Rightarrow Exploring $\tau^{\pm} \rightarrow \rho^{\pm} \nu_{\tau} \rightarrow \pi^{\pm} \pi^{0} \nu_{\tau}$

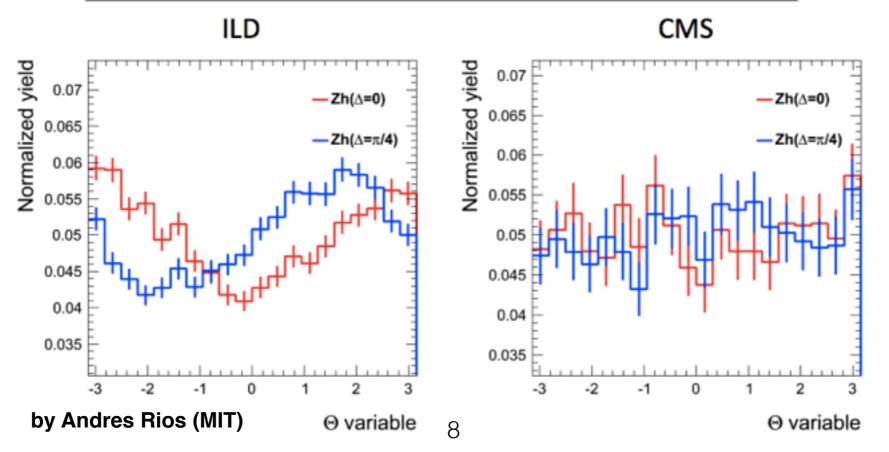
→ Reproduced previous generator level study

$\sigma_{e^+e^- o hZ}$	$0.30~\mathrm{pb}$
$Br(h \to \tau^+ \tau^-)$	6.1%
${ m Br}(au^- o\pi^-\pi^0 u)$	26%
$Br(Z \to visibles)$	80%
N_{events}	990
Accuracy	4.4°

ee collider $\sqrt{s}=250~{
m GeV}$ $\mathcal{L}=1{
m ab}^{-1}$

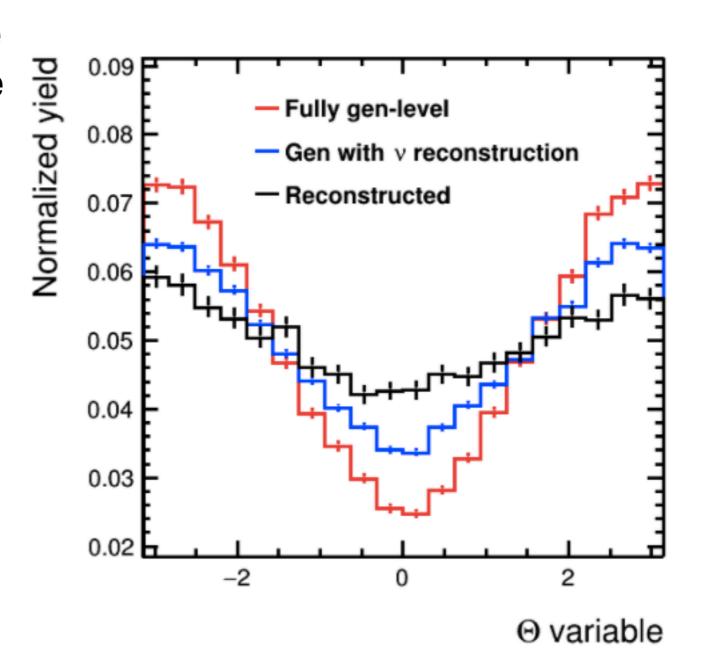
[arxiv:1308:1094]

- Study is including detector effects and background contributions
- → Using ILC-like and CMS-like detector with Delphes


Table I: Cut-flow for Zh events and main backgrounds with the ILC detector and a luminosity of 10 ab⁻¹.

Requirement .	Leptonic		Hadronic		
	$Zh o Z au^+ au^-$	Zll^a	$Zh \rightarrow Z\tau^+\tau^-$	ZU^a	
Object selection	266 ± 6	4506 ± 25	3907 ± 24	19751 ± 370	
Mass cuts	197 ± 5	139 ± 31	1995 ± 17	724 ± 71	
Kinematic cuts	191 ± 5	14.9 ± 9.8	1494 ± 15	20.9 ± 12.0	

^aZZ and Zh events are excluded here.


Table II: Same as Table I for CMS detector.

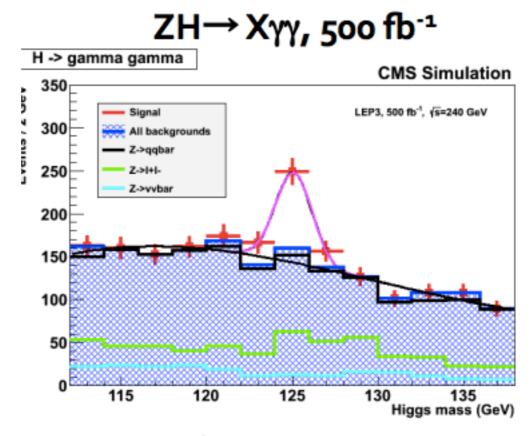
Requirement	Leptonic	Hadronic	
requirement	$Zh \rightarrow Z\tau^+\tau^-$	$Zh \rightarrow Z\tau^+\tau^-$	
Object selection	101 ± 4	2016 ± 17	
Mass cuts	68.8 ± 3.2	545 ± 9	
Kinematic cuts	63.3 ± 3.1	223 ± 6	

ш

- → Detector performance has large impact on analysis performance
 - for 1ab⁻¹ we see 22.7
 compared to 4.4 degree
 - impact on selection efficiency and performance of Θ variable
- Mass resolution is leading effect, follow by tau selection
- → Work in progress to map this to detector performance

Higgs to Photons

Uncertainties	HL-LHC*	μ-	CLIC	ILC**	CEPC	FCC-ee
m _H [MeV]	40	0.06	40	30	5.5	8
Гн [MeV]	-	0.17	0.16	0.16	0.12	0.04
g _{HZZ} [%]	2.0	-	1.0	0.6	0.25	0.15
gнww [%]	2.0	2.2	1.0	0.8	1.2	0.2
д ньь [%]	4.0	2.3	1.0	1.5	1.3	0.4
g _H ^T [%]	2.0	5	2.0	1.9	1.4	0.5
g _{HYY} [%]	2.0	10	6.0	7.8	4.7	1.5
g _{Hcc} [%]	-	-	2.0	2.7	1.7	0.7
g _{Hgg} [%]	3.0	-	2.0	2.3	1.5	0.8
gнtt [%]	4.0	-	4.5	18	-	-
gн _{µµ} [%]	4.0	2.1	8.0	20	8.6	6.2
д ннн [%]	30	-	24	-	-	-


^{*} Estimate for two HL-LHC experiments

For ~10y operation. Lots of "!,*,?" **Every number comes with her own story.**

^{**} ILC lumi upgrade improves precision by factor 2

Higgs to Photons

- Ш
- Precision measurements, beyond the LHC, will be challenging due to low BR
- → Results for LEP3 study assuming CMS performance

- Studies just started aiming for results in January (by Kevin Tang (MIT))
 - Similar story for H→µµ (by Aimane Ahmed (Saclay))

Conclusion

- → Studying impact of detector performance on Higgs measurements
- → Guided by requests from Gigi, Ariella, and Morgans
- → Menu includes
 - → ZH cross section
 - → Higgs to invisible decays
 - → vvbb final state
 - → 4-jet channel
 - \rightarrow CP study with $H\rightarrow \tau\tau$
- → Starting with $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$
- → Overall status: work in progress