NSLS-II Control System Cybersecurity

Robert Petkus
NSLS-II Controls
Control System Cybersecurity Workshop, ICALEPCS
11 October 2009

Outline

- Scope and Overview
- BNL Lab Policy
- Controls Network Architecture
- External Access
- Beam-lines
- Wireless
- Security Tools
- Conclusion

Scope Overview

- Design a robust, scalable, and secure network
- Offer excess multi-path bandwidth
- Compliance with NIST cyber recommendations
- Security and flexibility at the beam-lines
- Provide transparency to IT management and retain operational autonomy (abide lab doctrine)
- Deploy comprehensive real-time monitoring

Lab Policy

- Minimum security as specified in several NIST publications
 - Information systems (800-53)
 - Remote access (800-46)
 - Wireless (800-97)
 - Industrial control systems (800-82)
- Encrypted central log facilities
- Periodic vulnerability scanning (Nessus)
 - Goodbye crate
- Strong authentication CryptoCard or RSA SecureID
- Authorization against lab-wide Active Directory
- Incorporation of lab configuration standards using a configuration manager (Cfengine)

BROOKHAVEN SCIENCE ASSOCIATES

Control Network Overview

- Private network discreet from the BNL campus network
 - No email, web-surfing, cross-pollination of any sort
- Benefits Security
 - 100% resource dedication, no hefty port channels burdened with office or VoIP VLAN chatter
 - Insulation from destructive vulnerability scanning
 - Operational control
- Cons
 - Points of ingress/egress are required though...
 - Can all user expectations be provided for?

Control Network Overview

- The network will utilize VLANs and ACLs to segment traffic into logical broadcast domains for improved performance
 - IOCs, BPMs, PLCs, power supplies, etc., occupy different VLANs
 - ACLs define exceptions and granular access
 - Addresses will be allocated to ensure that each block can be referenced by a single ACL
- Adoption of QoS and Storm Control functionality to control unknown or "hazardous" unicast / broadcast traffic
- Centralized configuration management of network
- All switch ports disabled by default devices can't be attached to network ad-hoc
 - Registration of all MAC addresses
- SSH/TACACS+ access to switches for accreditation/encryption
- SNMPv3 using SHA authentication and AES encryption

External Access Production

- Interactive access to the controls network offsite via multi-homed SSH gateways
 - OpenSSH-LPK (code.google.com): public keys stored in LDAP
 - One-time-password (OTP) hard/soft token a la CryptoCard or RSA SecurID
 - SecurID continuously generates a new synchronized password every 60 seconds
 - CryptoCard utilizes a challenge-response based on portions of the prior session string - often requiring resynchronization
 - SecurID likely to be the only sanctioned mechanism when NSLS-II enters production
- VPN solution under consideration

External Access Today

- To-date, the controls group uses the general campus SSH gateways or a SSL / IPsec Cisco VPN
- OpenVPN server software on the controls private lab network enable other groups *within* the lab to gain access.
 - OpenVPN is simplistic to deploy and relies on SSL and DHCP
- LDAP-TLS is utilized for AA
 - Migration to lab-wide Centrify (AD integration for UNIX platforms via PAM) by year's end
 - Centrify for authorization within the controls private network remains an open question. Options include
 - Authorization through a multi-homed relay
 - OpenLDAP proxy to AD
 - Stand-alone LDAP deployment (double work)

Beam Lines

- Beamlines are assigned to their own VLANs
- Channel Access Gateways stand between their hardware and ours
- External access to workstations can be achieved using NX over SSH (Linux or Solaris Server, All clients) or Citrix (Citrix XenServer on Linux, all clients)
 - Key, certificate, or two-factor authentication
- *However* all users with access to the controls network must have a valid BNL account
- Ingress filtering to protect against MAC spoofing drop packets whose source address is unqualified

Beam Lines + Secure Storage

- Network is designed to provide for a secure distributed storage solution
 - 131 Gbps bandwidth local to switch, 20 Gbps uplink
 - Inexpensive, high-performance storage management solutions with either robust or nascent security potential
 - Hadoop (Map/Reduce reverse eng. of Google FS)
 - Implementation under development for client-side encrypt/decrypt and kerberos integration
 - KFS (another recode of Google FS)
 - NFSv4: gss / krb5p
 - GlusterFS (parallel FS with storage aggregated via IB RDMA or 1/10GE)
 - Implementation available utilizing Stunnel for encrypted transfer
 - Investigations into Cisco's General Routing Encapsulation
 - File transfer using BBFTP (no encryption of data, usernames only),
 GridFTP (certificate based authentication and encryption)

More on NX

- NX and Citrix are (2) attractive implementations of secure remote desktop software for potential consumption by staff and researchers
- NX currently in use in the controls group, consists of:
 - NXServer: allows UNIX system to act as terminal server, balances requests among NXNodes
 - NXNode: support 1000s of connections, redistribute sessions among servers, chooses shortest network path to user
 - NXAgent: multiplex X client connections into single connection
- NX uses highly-efficient X protocol compression using differential encoding and image streaming
 - Maintains memory cache (messagestore) achieving 60-80% hit rate (100% for images)
 - Encodes and calculates checksums, decodes on the fly
 - Uses a fixed TCP window accepting only enough bytes to make a full packet at that size
 - Final stream of data ZLIB compressed for a reduction of 30%
- Can encapsulate RDP (MS) and RFB (VNC)
- Tunneled via SSH
- Cryptographic host key exchange
- On the other hand, VNC:
 - Draws remote screen by sending huge amounts of data over wire
 - Screen differences sent on client pull, no client caching

NX and Citrix

- Citrix Metaframe, based on an adaptively pushed server buffer with client-side caching has been replaced
- Citrix XenServer constitutes a wholly new architecture
 - Combines Xen Hypervisor on Linux, a Virtual Desktop Infrastructure (VDI) where an entire user environment is accessed remotely
 - Like other VMs, network traffic is bridged to ensure packets are isolated from one another
 - Each user has their own dedicated desktop image including the OS and applications, OS is streamed to desktop on demand
 - Essentially, the same cryptographic host key exchange as in NX
 - Encrypted connection is handled via SSH or (preferably) the XenAPI SSL network service
 - "Xenstore" process determines client ACLs and ensures the client can only touch his domain
 - Optimal configuration urges expensive storage backend (NetApp)
- Conclusion
 - For an unrestrained (free) experience with NX, I recommend FreeNX
 - Although this version does not offer load balancing or other advanced features
 - Citrix is a powerful enterprise suite but is expensive and potential overkill

Wireless Controls

- Reduce infrastructure costs associated with cabling the entire tunnel
- Inexpensive external antennae better suited for a harsh environment
- Simplified power profile using PoE switches
- Ease of access during commissioning (push cart)
- Secure

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

- Wireless available to controls engineering staff
- WPA2 protocol utilizing AES
- Two-factor authentication with RSA SecurID

Security/Network Tool Roundup

- Several tools are currently in use or will be deployed in the production controls environment
 - OpenVas (post-Nessus) scanning during pre-production to determine the baseline limitations of control system hardware, routine scanning of server infrastructure
 - Network Enforcer network surveillance software
 - QRadar or IT Sentinel for security compliance management (adherence to NIST)
 - Netem to test protocol behaviors (e.g., CA) via emulation of unfavorable conditions;
 e.g., variable delay, packet loss, duplication, etc.
 - Snort-MySQL to monitor traffic/packet flows from the sFlow protocol detailed CA monitoring, detect anomalies
 - Central syslog facilities using syslog-ng tunneled with Stunnel (encrypt TCP within SSL), made browsable with Splunk.
 - Distributed network measurement, latency, data manipulation, and topology discovery tools to discern anomalies, jitter, etc., using tools like perfSonar and NDT
 - Cacti and Nagios

Conclusion - Questions

