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Physics in the late 19th century
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Albert A. Michelson, in 1894, stated: "… it seems 
probable that most of the grand underlying 
principles have been firmly established … An 
eminent physicist remarked that the future truths of 
physical science are to be looked for in the sixth 
place of decimals."
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Standard Model of Particle Physics
(the bright side)
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Standard Model of Particle Physics
(the dark side)



Precision 
Measurements
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and many 
more…



Electric Dipole Moment (EDM)  of the Neutron
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• Neutron EDM (dE) : Permanent, 
net charge separation within
the neutron volume

• Current limit [1]:

dE < 5 x 10-20 e-cm
• First experiment (1957):

[1] PRL 97 131801 (2006)
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x

Charge separation for an earth-size neutron
Current limit: Δ𝑥𝑥 < 3 × 10−13𝑟𝑟𝐸𝐸 (4 𝜇𝜇m)
Goal sensitivity: Δ𝑥𝑥 < 3 × 10−15𝑟𝑟𝐸𝐸 (40 nm)

Purcell and Ramsey, Phys. Rev. 78, 807 (1950) 



Electric Dipole Moment of polar molecules 

NH3 molecule has two (degenerate) ground 
states:
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Electric Dipole Moment of polar molecules 

NH3 molecule has two (degenerate) ground 
states:
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A permanent EDM is possible without violations in T (&P).

NH3: d = 0.3 x 10-8 e-cm
H20: d = 0.4 x 10-8 e-cm 
NaCl: d= 1.8 x 10-8 e-cm



Electric Dipole Moment of fundamental particles

Say, if the ground state (under fields) is 
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The ground state is not a T eigenstate! 0],[ ≠⇒ TH
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Fundamental particles don’t have degenerate ground state, so 𝑑𝑑 = 𝑑𝑑�𝐽𝐽.



EDM is a sensitive probe for symmetry-violating physics.

Suppressed 3-loop effect in the Standard Model

Large effect in more comprehensive theories

nEDM: violates P and T
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d < 10-26 e-cm→Λcp = 1 TeV

dn ~ 10-32 e-cm (Khriplovich & Zhitnitsky 1986)
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Pospelov, Ritz, Ann. Phy. 318 (2005) 119.  
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Theorists

Slide: Vincenzo Cirigliano
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Theorists

Slide: Vincenzo Cirigliano
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ΛCP > 200 GeV

ΛCP > 50 TeV
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Traditional technique: Nuclear Magnetic Resonance (NMR) 
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• Apply static B, E||B

• Look for ∆ω on reversal of E

• Larmor frequency:

(~ 29.2 Hz for B ~ 0.1G)

µB

dE

• dn: additional precession:

Figure: Physics Today 56 6 (2003) 33
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If dn= 5×10-28 e cm,  ∆ω=12nHz.



Technique: 
The Ramsey’s Separated Oscillatory Field Method
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5. Spin analyzer (only allows “spin up” 
UCN through to be counted)



Ultra-Cold Neutrons (UCN) 

● What are UCN ?
– Very slow neutrons 

(v < 8 m/s; λ > 500 Å )
that cannot penetrate into certain material.

• Long storage time
• Low radiation background
• 100% polarization

→ Precision measurements



Magnetic Field Fluctuations Corrected by “Co-magnetometer”

Data: ILL nEDM experiment with 199Hg co-magnetometer

EDM of 199Hg < 10-28 e-cm (measured); atomic EDM ~ α2Z2 → 3He EDM << 10-30 e-cm

If nEDM = 10-26 e⋅cm,

10kV/cm → 0.1 µHz shift

≅ B field of 2 × 10 -15 T.

“Co-magnetometer” 
Uniformly samples the B Field 
faster than its relaxation time.

20Under gravity, the center of mass of He-3 is higher than UCN by ∆h ≈ 0.13 cm, 
sets ∆B = 30 pGauss (1nA of leakage current). ∆B/B=0.001.
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21Slide thanks to Brad Filippone



ILL Experiment:
• UCN in storage cell (Be electrode, BeO dielectric 
cell wall) at room temperature 
• Ramsey’s separate oscillatory field method 
(interference in time domain)

PNPI Experiment:
Double cell configuration
→ double the signal and reduce the 
sensitivity to common mode magnetic field noise
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23Slide thanks to Klaus Kirch
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Status/Prospects:
Taking data at δdn~ 1x10-
26e-cm/yr
n2EDM hopes to reach 
δdn~ 4 x10-27e-cm/yr

Slide thanks to Klaus Kirch
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Slide thanks to Peter Fierlinger
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Sensitivity 
potential of 
nEDM @ Super-
SUN at ILLP 

Slide thanks to Peter Fierlinger
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The nextversion: Super-SUN (funded+ 
underconstruction @ ILL)

Slide thanks to Peter Fierlinger
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TRIUMF UCN Facility

Slide thanks to Jeff Martin
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31Slide thanks to Jeff Martin



32Slide thanks to Takeyasu Ito
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Slide thanks to 
Takeyasu Ito



34Slide thanks to Takeyasu Ito



nEDM@SNS

Improve statistical precision by x100.

• Increase E: LHe permits very large electric fields; 
~70 kV/cm in our measurement cell

• Increase N: LHe allows production of a high density 
of “ultracold” neutrons (UCN); ~few 102 UCN/cc

• Increase t: With T < 0.5K UCN can be stored for ~ a 
thousand seconds

Additionally allows use of Helium-3 as a:

• Spin analyzer, providing continual 
measurement of the precession frequency

• Co-magnetometer, providing exquisite 
monitoring of the magnetic field
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** “The Miracle of Helium”
𝜎𝜎 ∝

1
𝐸𝐸 𝑁𝑁𝑁𝑁

Physics Reports 237, 1 (1994)

**



nEDM@SNS
Measurement Cycle 

1. Load collection volume with polarized 3He atoms
2. Transfer polarized 3He atoms into measurement cell
3. Illuminate measurement cell with polarized cold 

neutrons to produce polarized UCN 
4. Apply a π/2 pulse to rotate spins perpendicular to B0

5. Measure precession frequency
6. Remove reduced polarization 3He atoms from 

measurement cell
7. Flip E-field & Go to 1.

36Slide thanks to Vince Cianciolo
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75 scientists from 19 institutions
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UIUC Responsibilities
• Test bed:

• 1K pot pump system, 
• 3He circulation pump stack, 
• Room-temperature vacuum plumbing, 
• Gas service plumbing, 
• Vibration-damping anchor block and wall, 
• Cryostat outer vacuum can, 
• Aluminum personnel support frame,
• Vacuum can (and shield) lift mechanism.
• 3He gas panel

• Cryostat:
• Top flange
• Insulating vacuum pump system
• Heat shields (on order)

• Slow Controls: National Instruments “cDAQ” front end
• Windows based
• Autonomous
• Data logged to “network shared variable” mechanism to server
• Compatible with EPICS

• 500 l Helium Dewar
• Tried “value engineering” (old Dewar from ORNL/U. Mich) – no.
• New standard Dewar on order.

nEDM TRC Review, September 1-2, 2015



39

Look at me!
Look at me!
Look at me NOW!
It is fun to have fun 
but you have to know how.

I can hold up the cup
and the milk and the cake!
I can hold up these books!
and the fish on a rake!
I can hold the toy ship
and a little toy man!
And look! With my tail
I can hold a red fan!
I can fan with the fan
As I hop on the ball!
but that is not all. 
Oh, no
That is not all…



EDMs Worldwide

K. Kirch, Proceedings CIPANP 2012
http://nedm.web.psi.ch/EDM-world-wide/

– @LANSCE
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http://nedm.web.psi.ch/EDM-world-wide/


Why Do We Need So Many Experiments?

Diamagnetic SystemsParamagnetic Systems

T. Chupp, M. Ramsey-Musolf, Phys. Rev. C91 035502 (2015)
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EDMs in SUSY

42

Compatible with baryon asymmetry

Li, Profumo, Ramsey-Musolf 2009-10Bhattacharya, VC, Gupta, Lin, Yoon
Phys. Rev. Lett. 115 (2015) 212002 [1506.04196]



43

Where Do We Come From? What Are We? Where Are We Going?

Paul Gauguin, 1897
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• The start: Big Bang Explosion 
• The stage: Inflation 
• Ingredients: Baryogenesis
• Cooking: Big Bang Nucleosynthesis (BBN); Stellar Nucleosynthesis

The Standard Model of 
Cosmology

Where Do We Come From? What Are We? Where Are We Going?

• Expanding
• Homogeneous & 

Isotropic
(CMB)
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Baryogenesis created more matter 
than anti-matter

 Sakharov’s criteria

 Baryon number violation
φ → B; φ → B          ∆B ≠ 0 

 CP violation and C violation
R(φ → B) > R(φ → B)

 Departure from thermal equilibrium
R(φ → B) > R(B → φ)

EDM

left-handed particle 
under C → left-handed antiparticle 
then   P → right-handed antiparticle

A.D. Sakharov, JETP 5 24 (1967). 



47



Backup Slides
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Experiment uses 3He as detector

• Inject small concentration (~ 10-11) of  polarized 3He

• Look for reaction: n + 3He → t + p + 764 keV

• t, p scintillate in 4He

• Pipe through light guides and detect with PMT

• n + 3He → t + p:

σ (3He, n: ↑↓singlet) ~ 107 b

σ (3He, n: ↑↑ triplet) < 104 b

• µHe/µn = 1.11
3He spins will rotate ahead of n spins in same B

Scintillation light according to Φ = Φ0 sin (ωHe – ωn) t  ~  1-PnP3 cos(ωHe – ωn)t

• Independent monitor of 3He spins with SQUIDs

• UCN too dilute to detect with magnetometer (SQUID)

R. Golub and S. K. Lamoreaux, Phys. Rep. 237 (1994) 1

UCN 3He

49

TPB coating



Other Systematic Effects
Geometric Phase
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Geometric Phase effect is significant at 
the level of 10-28 e⋅cm. 50

Sum UCNs moving in both clockwise & counterclockwise directions:



Dressed Spin Magnetometry
The magnetic moment of 3He can be altered 
through “spin dressing” with applied RF:

[ ])()( 3030 xJxJ nn γγγγδω −=
= 0 with appropriate x

1kHz, 100 mG RF field 

EDM observable: )(2 0 xEJd nn γδω =

All systematic effects and noises associated with the external magnetic field 
disappear!

modulate X to look for 
Xc which leads to δω=0

51
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The difference in the precession frequency 
between neutron and 3He:
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