
The muon g-2 from lattice QCD

Tom Blum (UCONN/RBRC)

22nd International Spin Symposium, University of Illinois

Septemper 29, 2016

1 / 38



Collaborators

RBC/UKQCD Collaboration, domain wall fermions

Peter Boyle (Edinburgh), Norman Christ (Columbia),

Vera Guelpers (Southampton), Masashi Hayakawa (Nagoya),

James Harrison (Southampton), Taku Izubuchi (BNL/RBRC),

Chulwoo Jung (BNL), Andreas Jüttner (Southampton),
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Muon g-2 experimental measurement [Bennett et al., 2006]

E821 at BNL measured relative precession of muon spin to it’s
momentum ωa = g−2

2
eB
m = aµ

eB
m , the muon anomaly

The rate of detected electrons oscillates with ωa, fit to
N(t) = Be−λt(1 + A cosωat + φ)
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from running around the ring, especially during a quench or energy extraction from the

magnet. The vertical mismatch from one pole piece to the next when going around the

ring in azimuth is held to ±10 µm, since the field strength depends critically on the

pole-piece spacing across the magnet gap.

Figure 12. The storage-ring magnet. The cryostats for the inner-radius coils are

clearly visible. The kickers have not yet been installed. The racks in the center are

the quadrupole pulsers, and a few of the detector stations are installed, especially the

quadrant of the ring closest to the person. The magnet power supply is in the upper

left, above the plane of the ring. (Courtesy of Brookhaven National Laboratory)

The field is excited by 14 m-diameter superconducting coils, which in 1996 were

the largest-diameter such coils ever fabricated. The coil at the outer radius consists of

two identical coils on a common mandrel, above and below the plane of the beam, each

with 24 turns. Each of the inner-radius coils, which are housed in separate cryostats,

also consists of 24 turns (see Figures 5(b) and 13(a)). The nominal operating current

is 5200 A, which is driven by a power supply. The choice of using an extremely stable

power supply, further stabilized with feedback from the NMR system, was chosen over

operating in a “persistent mode”, for two reasons. The switch required to change from

the powering mode to persistent mode was technically very complicated, and unlike the

usual superconducting magnet operated in persistent mode, we anticipated the need to

cycle the magnet power a number of times during a three-month running period.

The pole pieces are fabricated from continuous vacuum-cast low-carbon magnet

steel (0.0004% carbon), and the yoke from standard AISI 1006 (0.07% carbon) magnet

steel[60]. At the design stage, calculations suggested that the field could be made

quite uniform, and that when averaged over azimuth, a uniformity of ±1 ppm could be
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Figure 26. Histogram of the total number of electrons above 1.8 GeV versus time

(modulo 100 µ s) from the 2001 µ− data set. The bin size is the cyclotron period,

≈ 149.2 ns, and the total number of electrons is 3.6 billion.
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Figure 27. Typical calorimeter energy distribution, with an endpoint fit

superimposed. The inset shows the full range of reconstructed energies, from 0.3 to

3.5 GeV.

times and energies are given by fits to standard pulse shapes, which are are established

for each detector by taking an average over many pulses at late times. The variations in

pulse shapes in all detectors are found to be sufficiently small as a function of energy and

aµ(Expt) = 11 659 208.0(5.4)(3.3)× 10−10 0.54 ppm!
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New muon g-2 experiments

Storage ring moved to FNAL for E989, beginning in 2017
(Peter Winter’s talk next)

which is aiming for 0.14 ppm, 4× improvement!

In Japan at J-PARC, the E34 experiment will measure aµ using
ultra-cold muons in a “table-top” experiment (∼ 2020)
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Experiment - Theory

SM Contribution Value±Error (×1011) Ref
QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6923± 42 [Davier et al., 2011]

6949± 43 [Hagiwara et al., 2011]

HVP NLO −98.4± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009]

HLbL (NLO) 3± 2 [Colangelo et al., 2014]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802± 49 [Davier et al., 2011]

(0.43 ppm) 116591828± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592080± 63 [Bennett et al., 2006]

Diff (Exp−SM) 287± 80 [Davier et al., 2011]

261± 78 [Hagiwara et al., 2011]

249± 87 [Aoyama et al., 2012]

QCD errors largest, discrepancy large
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New experiments+new theory=new physics?

Fermilab E989 begins 2017, aims for 0.14 ppm

J-PARC E34 ∼2020, aims for 0.3-0.4 ppm

Today aµ(Expt)-aµ(SM) ≈ 2.9− 3.6σ

If both central values stay the same,

E989 (∼ 4× smaller error) → ∼ 5σ
E989+new HLBL theory (models+lattice, 10%) → ∼ 6σ
E989+new HLBL +new HVP (50% reduction) → ∼ 8σ

Good for discriminating models if discovery at LHC [Stckinger, 2013]

Lattice calculations important to trust theory errors
(see talks at Lattice 2016 (Southampton) for latest results by
many groups)
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Hadronic vacuum polarization (HVP) contribution

+

The blobs (quark loops), which represent all possible intermediate
hadronic states (ρ, ππ, . . . ) are not calculable in perturbation
theory, but can be calculated from

dispersion relation + experimental cross-section for
e+e− → hadrons

first principles using lattice QCD
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Lattice QCD method [Blum, 2003, Lautrup et al., 1971]

+
Using lattice QCD and continuum, ∞-volume pQED

aµ(HVP) =
(α
π

)2
∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0),
computed directly on Euclidean space-time lattice

Πµν(q) =

∫
e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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To improve signal to noise use direct-double-subtraction method
[Bernecker and Meyer, 2011, Lehner and Izubuchi, 2015]

and study Euclidean time dependence

Π(q2)− Π(0) =
∑

t

(
cos qt − 1

q2
+

1

2
t2

)
C (t)

C (t) =
1

3

∑

x ,i

〈ji (x)ji (0)〉

aHVP
µ =

∑

t

w(t)C (t)

w(t) includes the continuum QED part of the diagram
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Integrand w(t)C (t), light quark contribution (C. Lehner)
Integrand wTC (T ) for the light-quark connected contribution:
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Statistical noise from long-distance region
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mπ = 140 MeV, a = 0.114 fm, L = 5.5 fm
(RBC/UKQCD 483 ensemble)

Statistical noise comes from long-distance region
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Comparison to dispersion relation+σe+e− method
[Bernecker and Meyer, 2011]

Combined lattice and dispersive analysis

We can use the dispersion relation to overlay experimental e+e� scattering data
(Bernecker, Meyer 2011). Below the experimental result is taken from Jegerlehner
2016:
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w
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t

Jegerlehner R-ratio
Lattice u+d+s

The lattice data here includes finite-volume corrections based on NLO FV ChPT.
Continuum limit, charm contribution, and QED/IB correction missing. Will study
di↵erent individual datasets: BaBar, KLOE.
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(Using data from Jegerlehner, et al .)
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Combined lattice + dispersive result
The lattice data is precise at shorter distances and the experimental data is precise at
longer distances. We can do a combined analysis with lattice and experimental data:

aµ =
Ptlat/ex

t=0 wtC lattice(t) +
P1

t=tlat/ex+1 wtCexp(t)

As expected a nice plateau region as a function of tlat/ex is visible.

 680

 685
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 705

 710

 16  18  20  22  24  26  28  30

a µ
 1

010

tlat/ex

If we took tlat/ex = 15a ⇡ 1.7 fm, we currently have a statistical error of 0.7%

aHVP,u,d,s
µ = 693(5) ⇥ 10�10 .

Continuum limit, charm contribution, and QED/IB correction missing.

12 / 21

tlat/ex = 15a ≈ 1.7 fm gives 0.7% statistical error!

New numerical techniques (AMA, LMA) crucial

aHVP,u,d ,s
µ = 693(5)× 10−10

( including strange quark contribution (M. Spraggs) [Blum et al., 2016]

)
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Systematic errors

Lattice spacing errors: a = 0.086 fm calculation in progress

Leading finite volume effects from ππ, use FV χPT
[Aubin et al., 2015]From Aubin et al. 2015 (arXiv:1512.07555v2)

FIG. 4: Comparison of �A1(q̂
2) � �A1(q̂

2) between MILC asqtad lattice data (blue points) and

lowest-order SChPT (red points).

the continuum limit. However, the slopes are also vastly di�erent, and this is a physical
e�ect, already observed in Ref. [12]. The slope of the vacuum polarization at low q2 is
dominated by the � resonance, but this resonance (and others) are absent in Eq. (2.12).16

Despite these di�erences, there are useful lessons to be learned from Fig. 3. The sub-
tracted value �A1(q̂

2) is an order of magnitude closer to the infinite-volume points than the
unsubtracted value, �A1(q̂

2). Clearly, the lesson is that one should carry out the subtrac-
tion (2.6) (at least for the A1 representation). This was already observed empirically in
Ref. [22], and we see here that this observation is theoretically supported by ChPT. Fur-
thermore, we see that �A1(q̂

2) and �A44
1

(q̂2) straddle the infinite-volume result, suggesting

that also in lattice QCD the true value of �(q2) lies in between these two.17

Of course, one would like to test whether these lessons from lowest-order SChPT also
apply to the actual lattice data. While no lattice data are available in infinite volume,
it is possible to compare finite-volume di�erences predicted by SChPT to such di�erences
computed from the lattice data. In Fig. 4 we show the di�erence �A1(q̂

2) � �A1(q̂
2) in the

low-q̂2 region, both on the lattice and computed in lowest-order SChPT. This di�erence is a
pure finite-volume e�ect. Clearly, SChPT does a very good job of describing the lattice data,
with all red points within less than 1� of the blue points. This is remarkable, especially in
view of the fact that lowest-order SChPT does such a poor job of describing the full lattice
data for �A1(q̂

2), as we noted above.

16 This observation of Ref. [12] has led to the ubiquitous use of vector-meson dominance to parametrize the

vacuum polarization, before model-independent methods started to be explored [4, 19–21].
17 �r(q̂

2) for r 2 {T1, T2, E} also lies below the infinite-volume result close to �A44
1

(q̂2), according to ChPT.

10

FIG. 5: Comparison of �A1(q̂
2) � �A44

1
(q̂2) between MILC asqtad lattice data (blue points) and

lowest-order SChPT (red points).

We may also consider di�erences between di�erent representations, which also probes the
size of finite-volume e�ects. In Fig. 5 we show the di�erence �A1(q̂

2) � �A44
1

(q̂2), for the

lattice data, and computed in SChPT. To extract �A44
1

(q̂2) from �µ⌫(q̂) we need at least one

spatial component of the momentum to not vanish, implying that q̂2 � 4�2/L2 = 0.108 GeV2

for these points. All observations made above about the di�erence �A1(q̂
2)��A1(q̂

2) apply
here as well, with the di�erence between lattice data and ChPT now averaging about 1�.
We note the di�erence of scale on the vertical axis between Figs. 4 and 5, consistent with
the fact that both �A1(q̂

2) and �A44
1

(q̂2) are much closer to the infinite-volume limit than

�A1(q̂
2). We find that the pattern is very similar for other representations.

B. E�ects on aHVP
µ

Finally, while it is already clear that there are significant finite-volume e�ects in the
vacuum polarization, we consider the question of how they propagate to the anomalous
magnetic moment itself. We will, in fact, compare the quantity aLO,HVP

µ [q̂2
max] with the

choice q̂2
max = 0.1 GeV2, in order to be certain that di�erences are due to finite volume, and

not to lattice spacing e�ects.18

We fit the data for �A1 and �A44
1

with a [0, 1] Padé [19], or a quadratic conformally

mapped polynomial [20] (both are three-parameter fits), on a low-q2 interval, looking for the
number of data points in the fit that gives the highest p-value. We then compare the results.

18 More than 80% of aLO,HVP
µ comes from the momentum region below 0.1 GeV2 [20].

11

MILC lattice data with m⇡L = 4.2, m⇡ ⇡ 220 MeV; Plot di↵erence of ⇧(q2) from di↵erent irreps of 90-degree

rotation symmetry of spatial components versus NLO FV ChPT prediction (red dots)

While the absolute value of aµ is poorly described by the two-pion
contribution, the volume dependence may be described su�ciently well to
use ChPT to control FV errors at the 1% level; this needs further scrutiny

Aubin et al. find an O(10%) finite-volume error for m⇡L = 4.2 based on
the A1 � A44

1 di↵erence (right-hand plot)

9 / 21

Compare di↵erence of integrand of 48 ⇥ 48 ⇥ 96 ⇥ 48 (spatial) and
48 ⇥ 48 ⇥ 48 ⇥ 96 (temporal) geometries with NLO FV ChPT
(A1 � A44

1 ):

-10
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 0  5  10  15  20  25  30  35  40  45
a µ

 1
010

T

Nconf = 82

Full spatial-temporal integrand
NLO FV ChPT spatial-temporal integrand

0
NLO FV ChPT + ρ back prop

m⇡ = 140 MeV, p2 = m2
⇡/(4⇡f⇡)2 ⇡ 0.7%

10 / 21
LO χPT poor for total HVP (ρ res), look at differences instead

ππ FV effect is about 3% in LO χPT
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Disconnected contribution to HVP (C. Lehner)

quark-disconnected diagrams notoriously diffcult, expected to
be small (vanishes in SU(3) limit)

Still important to reach (sub-) percent precision

First results at physical masses with statistically resolved
signal [Blum et al., 2015a].

New stochastic estimator allowed us to obtain
−(9.6± 3.3stat ± 2.3sys)× 10−10, or 1.5% of total at 3 σ level

16 / 38



Partial sum
∑

t w(t)C (t)
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FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o↵ a
HVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of

T with our final result for a
HVP (LO) DISC
µ with its statistical

error band.

we report our final result

aHVP (LO) DISC
µ = �9.6(3.3)(2.3) ⇥ 10�10 , (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest
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LT for 323 x 64 lattice
LT for 483 x 96 lattice

LT for 643 x 128 lattice
LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of aHVP

µ at percent or sub-percent pre-
cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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We choose t = 20 in plateau region as central value and use
conservative resonance model including the ρ and φ + FV χPT for
the 2π state to estimate the systematic error. With disc. errors,

a
HVP(LO)DISC
µ = −(9.6± 3.3stat ± 2.3sys)× 10−10
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Beyond leading order

Compute O(α) corrections to HVP (gluons connect quark loops!):

 0

 0.01
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 0.04

 0.05

 0.06

 0.07

 0  10  20  30  40  50  60  70
r

Resulting two-point p(d) from p(r)=(1.5 + r)-5

Figure 6: Displacement probability for 48c run 1.

(a) V (b) S (c) T (d) D1 (e) D2

(f) F (g) D3

Figure 7: Mass-splitting and HVP 1-photon diagrams. In the former the dots
are meson operators, in the latter the dots are external photon vertices. Note
that for the HVP some of them (such as F with no gluons between the two
quark loops) are counted as HVP NLO instead of HVP LO QED corrections.
We need to make sure not to double-count those, i.e., we need to include the
appropriate subtractions! Also note that some diagrams are absent for flavor
non-diagonal operators.

8

Computation underway on 483 physical mass ensemble

18 / 38



Outline I

1 Introduction

2 The hadronic vacuum polarization contribution

3 Hadronic light-by-light (HLbL) scattering contribution

4 Summary

5 background

6 References

19 / 38



+ + · · ·

Models: (105± 26)× 10−11
[Prades et al., 2009, Benayoun et al., 2014]

(116± 40)× 10−11
[Jegerlehner and Nyffeler, 2009]

systematic errors difficult to quantify

First lattice results [Blum et al., 2015b, Blum et al., 2015c] promise reliable
errors. Using new methods we have found, for physical
masses, a = 0.114 fm, L = 5.5 fm

acHLbL
µ = 11.60± 0.96× 10−10

adHLbL
µ = −6.25± 0.80× 10−10 (leading diagram)

aHLbL
µ = 5.35± 1.35× 10−10
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Point source method in pQED (L. Jin) [Blum et al., 2015c]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
′
, σ

′
x
′
, ρ

′ z
′
, κ

′

xop, ν

z, κ

y, σ x, ρ

Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6
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and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

+ 4 more diagrams

Compute quark loop non-perturbatively using lattice QCD

Photons, muon on lattice, but use (exact) tree-level props

Amplitude is obtained by integrating (summing) over all
vertices (QED loop integrals) in FV

Do QED loop integrals (O(V 2)) stochastically by randomly
choosing pairs of points, r = |x − y |
Quark loop exponentially suppressed with separation r .
Concentrate on “short distance” (r <∼ π Compton λ) using
importance sampling!
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Continuum and ∞ volume limits in QED (L. Jin) [Blum et al., 2015c]

QED systematics large, O(a4), O(1/L2), but under control

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2 2.5 3 3.5 4

F
2
(0
)/
(α

/
π
)3

a2 (GeV−2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

F
2
(0
)/
(α

/π
)3

1/(mµL)
2

a set using physical muon mass, i .e., input parameter amµ

Limits quite consistent with well known PT result

Very good check on method/code
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Physical point cHLbL contribution (L. Jin)

ALCC award on MIRA (100 PF BG/Q) at ANL ALCF
Physical mass 2+1f Möbius DWF ensemble (RBC/UKQCD),
(5.5 fm)3 QCD box, a = 0.114 fm (a−1 = 1.7848 GeV)
Uses AMA with 2000 low-modes of the Dirac operator and
∼ 2200 sloppy propagators per configuration (65 total)
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acHLbL
µ = 11.60± 0.96× 10−10
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Disconnected contributions

SU(3) flavor:

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κy, σ x, ρ

xsrc xsnky′, σ′ z′, κ′ x′, ρ′

xop, ν

z, κy, σ x, ρ

Leading O(ms −mu,d)

xsrc xsnkz′, κ′ y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, κ′

xop, ν

z, κ
y, σ x, ρ

xsrc xsnkz′, κ′

y′, σ′ x′, ρ′

xop, ν

z, κ y, σ x, ρ

O(ms −mu,d)2 and higher
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Physical point dHLbL contribution (L. Jin)

ALCC award on MIRA (100 PF BG/Q) at ANL ALCF
Physical mass 2+1f Möbius DWF ensemble (RBC/UKQCD),
(5.5 fm)3 QCD box, a = 0.114 fm (a−1 = 1.7848 GeV)
Uses AMA with 2000 low-modes of the Dirac operator and
(1024 + 512)2 measurements per configuration (65 total)
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Eliminating discretization and (QED) FV effects

Systematic errors could be 20% or more

Ongoing calculation at a = 0.08 fm for continuum limit

Integrand exponentially suppressed with distance between any
pair of points on the quark loop. QCD FV effects small.

Amplitude not suppressed with distance between points on
muon line and quark loop. QED FV effects large.

Use larger QED box for QED FV effect

Light-by-Light of Muon g −2 Luchang Jin

With this choice, in the larger region, most of the contribution should come from the connected
π0 exchange. How rapidly this contribution decays could give us a hint about the size of the
QCD finite-volume effect, which comes from the quark propagators evaluated within the finite size
lattice.

3. QCD Box Inside a Larger QED Box

The QCD finite volume effects are exponentially suppressed in the linear size of the lattice
volume timesmπ , the energy of lowest energy eigen-state of QCD. There are also QED finite
volume effects, which are caused by the photon and the muon propagators being evaluated within
that finite volume, and the summations over~xsrc, ~xsnk, x′, y′, z′ being controlled to lie within that
finite volume. Because the photon is massless, the QED finite volume effects are power like, similar
to many other lattice calculations involving QED. In this particular case, these QED finite volume
effects scale like 1/L2 as discussed in Ref [13, 7]. These QED finite volume effects can be reduced
by evaluating the photon and muon propagators and performing the summation over~xsrc, ~xsnk, x′,
y′, z′ in Eq. (2.3) in a larger volume compared to that in which the QCD part of the calculation is
performed. We refer to the former as the QED box and the latteras the QCD box, see Figure 3.
With our current light-by-light evaluation strategy, the computations for the quark and the muon
propagators are almost independent. We can compute the light-by-light process for a few different
QED boxes without recomputing the quark part. One can then extrapolate to infinite volume based
on these results from different QED boxes. Since the quark part is the same, we expect there will
exist strong correlations between these results, which would benefit the extrapolation. In principle,
one could evaluate the muon and photon propagators using thecontinuum formulae and perform
the coordinate-space QED summation in infinite volume directly, thus completely eliminating this
O(1/L2) finite volume effect. In fact, this is exactly the strategy for the HVP calculation, where
the usual approach [4] can be viewed as substituting the finite-volume result forΠ(q2) into one- or
two-loop QED calculations performed in infinite volume. At this point, one can see that computing
the QED part of the diagram in a larger, possibly infinite, QEDbox is a quite general idea, and
could be applied in many (but not necessarily all) other lattice QCD calculations involving QED.
In some cases, like the QED mass-splittings, all one may needto evaluate is the photon propagator
in infinite volume. Christoph Lehner talks about this in greater details in his talk at LATTICE 2015.

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 3: QCD box inside QED box illustration.

As discussed above, the finite volume effects of the light-by-light calculation come from two
sources. One source is the quark loop is evaluated using a finite QCD box, which is exponentially
suppressed in the size of the QCD box. The other source is the photon and muon propagators
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Or, continuum, ∞ volume QED calculation (Mainz group,
Lattice 2016) analogous to HVP computation
(two-loop integrals still done stochastically)
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Physics beyond the SM

If there really is a discrepancy, where does it come from?

Most likely scenario is still SUSY
[Bach et al., 2015, Athron et al., 2016, Belyaev et al., 2016], . . .R56 Topical Review

µ µν̃µ

χ+
k

µ µµ̃m

χ0
i

Figure 3. The two SUSY one-loop diagrams, written in terms of mass eigenstates. The external
photon line has to be attached to the charged internal lines.

In the following subsections, we will provide the exact analytical formulae for all these
diagrams and also derive the numerical prefactors in the proportionalities (43) and (44).

2.2. One-loop contributions

Each diagram that contributes to aµ contains one line carrying the µ-lepton number. This fact
allows us to divide the MSSM one-loop diagrams into two classes:

(a) SM-like diagrams, where the µ-lepton number is carried only by µ and/or νµ.
(b) SUSY diagrams, where the µ-lepton number is carried also by µ̃ and/or ν̃µ.

The diagrams of the first class involve only SM particles, and they are essentially identical in
the SM and the MSSM. The only non-identical diagrams involve two couplings of physical
SM or MSSM Higgs bosons to the muon line. Owing to the additional suppression factor
m2

µ

/
M2

W such diagrams are entirely negligible both in the SM and the MSSM.
Therefore the SUSY one-loop contribution, i.e. the difference between aµ in the MSSM

and the SM, is given entirely by the diagrams of the second class. They are displayed in
figure 3 and involve either a chargino–sneutrino or a neutralino–smuon loop. In contrast to
the diagrams in figure 2 they are written in terms of interaction eigenstates, which is more
appropriate for an exact evaluation. The diagrams have been evaluated in [33–36] with various
restrictions on the masses and mixings. These restrictions have been dropped in [37–40], and
exact results have been derived. Later, more comprehensive and general evaluations of these
diagrams have been presented in the context of particular supersymmetric models [41–43] and
the unconstrained MSSM [44] (see also [45, 46] for related results on weak dipole moments
in the MSSM). We present the general result in the form given in [47]:

aSUSY,1L
µ = aχ0

µ + aχ±
µ , (45)

with

aχ0

µ = mµ

16π2

∑
i,m

{
− mµ

12m2
µ̃m

(∣∣nL
im

∣∣2 +
∣∣nR

im

∣∣2)FN
1 (xim) +

mχ0
i

3m2
µ̃m

Re
[
nL

imnR
im

]
FN

2 (xim)

}
, (46)

aχ±
µ = mµ

16π2

∑
k

{
mµ

12m2
ν̃µ

(∣∣cL
k

∣∣2 +
∣∣cR

k

∣∣2)FC
1 (xk) +

2mχ±
k

3m2
ν̃µ

Re
[
cL
k cR

k

]
FC

2 (xk)

}
, (47)

where i = 1, . . . , 4 and k = 1, 2 denote the neutralino and chargino indices, m = 1, 2 denotes
the smuon index and the couplings are given by

nL
im = 1√

2
(g1Ni1 + g2Ni2)U

µ̃

m1
∗ − yµNi3U

µ̃

m2
∗, (48)

nR
im =

√
2g1Ni1U

µ̃

m2 + yµNi3U
µ̃

m1, (49)
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the future aµ experiments will exclude most points. Grey (green) circles
show “degenerate” points found in Ref. [10], which correspond to distinct
SUSY parameter scenarios which, however, lead to the same LHC signatures.
Combining LHC-measurements with aµ will allow to select between these
points.

3.2. Precision prediction for aSUSY
µ

In view of these prospects and of the expected precision of the future
experiments, it is also motivated to aim for a SUSY prediction for aµ with
a theory uncertainty which is as small as possible, ideally smaller than the
future experimental uncertainty. This requires the computation of the full
two-loop contributions to aSUSY

µ , see Ref. [12].
This goal has not been reached, but significant progress has been achieved

in the past years. Here, we highlight, in particular, the computation of the
fermion/sfermion-loop contributions in Refs. [13, 14]. A sample diagram is
shown in Fig. 3. This computation has two interesting qualitative conse-
quences. The first is that it reduces the theory uncertainty resulting from the
possibility to choose different renormalization schemes for the finestructure
constant α and the weak mixing angle sin θW. The one-loop contributions
directly depend on these input parameters and thus on the scheme choice.
The leading differences between the usually considered schemes originate
from fermion or sfermion loops in gauge boson self energies. These terms
are precisely included in the counterterm computation of Refs. [13, 14]. The
sum of the one-loop contributions and the two-loop contributions of these
references is essentially scheme independent (up to 3-loop effects and effects
from non-fermion/sfermion-loop contributions).

Fig. 3. A sample two-loop diagram contributing to the fermion/sfermion-loop con-
tributions of Refs. [13, 14].

News on Muon (g − 2) 2245

However, the results of these references were never combined consistently,
because the employed renormalization schemes were different. Hence, in
Ref. [3] the two-loop computation of the electroweak contributions has been
repeated in the appropriate renormalization scheme, so that a combination
with the hadronic and the leading three-loop results of Ref. [6] became pos-
sible. Figure 1 shows sample Feynman diagrams and numerical results of the
bosonic and the Higgs-dependent fermionic two-loop contributions.

Furthermore, the remaining sources of parametric and theory uncertain-
ties have been analyzed. The final result obtained in Ref. [3] for the SM
electroweak contributions is

aEWµ = (153.6± 1.0)× 10−11 . (1)

Here, the parametric uncertainty due to the input values of the Higgs boson,
W - and Z-boson and top-quark is negligible; the uncertainty is dominated by
the one of the hadronic contributions and has been taken over from Ref. [6].

3. Contributions in supersymmetric models

3.1. Motivation

Figure 2 provides motivation to consider aµ as a constraint on the SUSY
parameter space. Black (red) circles show the prediction for aSUSY

µ for the
SPS benchmark points [9]. As can be seen, these well-motivated points lead
to very different contributions, and independently of the resulting value,

Fig. 2. The prediction for aSUSY
µ for the case of the SPS benchmark points [9] and

for the “degenerate” points identified in Ref. [10]. The bands indicate the current
deviation between experiment and the SM prediction, and the expected precision
of future measurements, assuming the same central value. Figure from Ref. [11].

SUSY signatures at LHC

But there are other models too: 2HDM[Crivellin et al., 2016, Cherchiglia et al., 2016],
Dark Matter [Kobakhidze et al., 2016], . . . , LFV [Altmannshofer et al., 2016]
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Summary

The muon anomalous magnetic moment provides a stringent
test of the SM: ∼ 3 standard deviation difference at the level
of 0.5 ppm

Lattice QCD(+QED) calculations with physical masses, large
boxes + improved measurement algorithms are powerful

Physical point calculations nearly complete at a = 0.114 fm,
a = 0.086 fm calculations begun

Lattice QCD calculations will reduce and solidify current
theory errors in time for

Upcoming E989 measurement at Fermilab (goal 0.14 ppm)

Good opportunity to test the SM
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Interaction of particle with static magnetic field

V (~x) = −~µ · ~Bext

The magnetic moment ~µ is proportional to its spin (c = ~ = 1)

~µ = g
( e

2m

)
~S

The Landé g -factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions
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In interacting quantum field theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

〈µ(p′)|Jµ|µ(p)〉 = ū(p′)
(
γµ F1(q2) + i

[γµ, γν ] qν

2

F2(q2)

2m

)
u(p)

which results from Lorentz invariance and charge conservation
when the muon is on-mass-shell and where q = p′ − p

F2(0) =
g − 2

2
≡ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)
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Compute these corrections order-by-order in perturbation theory by
expanding Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

QED

Weak

QCD

Z

W

Z
...

Corrections begin at O(α); Schwinger term = α
2π = 0.0011614 . . .

hadronic contributions ∼ 6× 10−5 smaller, dominate theory error.
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Dispersive method [Bouchiat and Michel (1961); Durand (1962); ...]

The vacuum polarization (blob) is an analytic function.

Π(q2) =
1

π

∫ ∞

0
ds
=Π(s)

(s − q2)

σtotal(e
+e− → hadrons) =

4π2α

s

1

π
=Π(s)

(by the optical theorem) which leads to

aµ(HVP) =
1

4π2

∫ ∞

4m2
π

ds K (s)σtotal(s)

aµ(HVP) ∼ 693(4) (0.6% error, but largest contribution to
SM value)

σtotal(S) also from τ → π±π0ν (needs isospin correction)
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Simulation details

Gauge field ensembles generated by RBC/UKQCD collaborations

Domain wall fermions: chiral symmetry at finite a

Iwasaki Gauge action (gluons)

Range of pion (quark) masses mπ = 140, 170, 330, 420 MeV

Range of lattice spacings, a = 0.144, 0.114, 0.086 fm

Range of lattice sizes, L/a = 16, 24, 32, 48, 64

Range of lattice volumes, (1.8)3, (2.7)3, (4.6)3, (5.5)3 fm3

Use all-mode-averaging technique [Izubuchi et al., 2013]
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Brief aside: Lattice setup

Compute correlation functions (e.g. 〈jµ(x)jν(y)〉, jµ = ψ̄γµψ)
in Feynman path integral formalism

4(5)D hypercubic lattice regularization, non-zero lattice
spacing a and finite volume V (extrap a→ 0, V →∞)

Handle fermion integrals analytically. Propagators inverse of
large sparse matrix M, lattice Dirac operator (domain wall,
staggered, Wilson, ...). Costliest part of calculation

Do path integrals over gauge fields stochastically by Monte
Carlo importance sampling: generate ensemble of gauge field
configurations {U(x)} with weight detM(U) exp−Sg , then
〈· · · 〉 simple average over ensemble

Gauge field configurations represent fluctuations (virtual
particles) of the vacuum

Statistical errors O(1/
√
Nmeas)
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