Searching for Dark Matter with Atoms, Molecules and Ultracold Neutrons

Yevgeny Stadnik, Victor Flambaum, Benjamin Roberts, Vladimir Dzuba

University of New South Wales, Sydney, Australia

In collaboration with: Dmitry Budker*, Nathan Leefer*, Nicholas Ayres‖, Phillip Harris‖, Klaus Kirch†, Michal Rawlik‡

* Helmholtz Institute Mainz, Germany ‖ University of Sussex, United Kingdom
† Paul Scherrer Institute, Switzerland ‡ ETH Zurich, Switzerland

PRL 113, 081601 (2014); PRL 113, 151301 (2014);
PRL 114, 161301 (2015); PRL 115, 201301 (2015);
PRD 89, 043522 (2014); PRD 90, 096005 (2014);
EPJC 75, 110 (2015); PRA 93, 063630 (2016);

22nd International Spin Symposium, University of Illinois, September 2016
Motivation

Overwhelming astrophysical evidence for existence of **dark matter** (~5 times more dark matter than ordinary matter).
Motivation

Overwhelming astrophysical evidence for existence of dark matter (~5 times more dark matter than ordinary matter).

– “What is dark matter and how does it interact with ordinary matter non-gravitationally?”

<table>
<thead>
<tr>
<th>Dark Sector</th>
<th>Standard Model Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>u c t Y h</td>
</tr>
<tr>
<td>?</td>
<td>d s b g</td>
</tr>
<tr>
<td>?</td>
<td>e μ t Z</td>
</tr>
<tr>
<td></td>
<td>Ve Vμ Vτ W</td>
</tr>
</tbody>
</table>
Motivation

Traditional “scattering-off-nuclei” searches for heavy WIMP dark matter particles (χ) have not yet produced a strong positive result.

\[
\mathcal{M}_{\text{scat}} \propto (e')^2 \\
\implies \sigma_{\text{scat}} \propto (e')^4
\]

Observable is **quartic** in the interaction constant e', which is extremely small ($e' \ll 1$)!
Motivation

We propose to search for other well-motivated forms of dark matter: low-mass spin-0 particles, which form a coherently* oscillating classical† field ($<\rho_\phi> = m_\phi^2 \phi_0^2/2$): $\phi(t) = \phi_0 \cos(m_\phi t)$, via effects that are linear in the interaction constant ($\Lambda_X = \text{new-physics energy scale}$).

$$\mathcal{L}_{\text{eff}} = \frac{\phi}{\Lambda_X} X_{\text{SM}} X_{\text{SM}} \implies \mathcal{O} \propto \frac{1}{\Lambda_X}$$

Consideration of linear effects has already allowed us to improve on existing constraints on some interactions of dark matter by up to 15 orders of magnitude, as well as derive the first constraints on some other interactions of dark matter.

* Coherently oscillating field \Rightarrow cold, i.e., $E_\phi \approx m_\phi c^2$

† $n_\phi (\lambda_{dB}/2\pi)^3 \gg 1$
Low-mass Spin-0 Dark Matter

Non-thermal production of coherently oscillating classical field, \(\phi(t) = \phi_0 \cos(m_\phi t) \), in the early Universe, e.g., via the misalignment mechanism. \([10^{-22} \text{ eV} \leq m_\phi \leq 0.1 \text{ eV}]\)

Sufficiently low-mass and feebly-interacting bosons are practically stable \((m_\phi \leq 24 \text{ eV} \text{ for the QCD axion})\), and survive to the present day to form galactic DM haloes (where they may be detected).
Low-mass Spin-0 Dark Matter

The mass range 10^{-22} eV $\leq m_\phi \leq 0.1$ eV is inaccessible to traditional “scattering-off-nuclei” and collider searches, but large regions are accessible to low-energy atomic experiments that search for oscillating signals produced by $\phi(t) = \phi_0 \cos(m_\phi t)$ $[10^{-8} \text{ Hz}^* \leq f \leq 10^{13} \text{ Hz}]$.

In particular, ultra-low-mass spin-0 DM with mass $m_\phi \sim 10^{-22}$ eV has been proposed to resolve several long-standing “small-scale crises” of the cold DM model (cusp-core problem, missing satellite problem, etc.), due to its effects on structure formation†.

* $f \sim 10^{-8}$ Hz corresponds to $T \sim 1$ year.
† On sub-wavelength length scales, the gravitational collapse of DM is prevented by quantum pressure.
Coherence of Galactic DM

Gravitational interactions between DM and ordinary matter during galactic structure formation result in the virialisation of the DM particles ($v_{\text{vir}} \sim 10^{-3} c$), which gives the galactic DM field the finite coherence time and finite coherence length:

$$\tau_{\text{coh}} \sim \frac{2\pi}{m_\phi v_{\text{vir}}^2} \sim 10^6 \left(\frac{2\pi}{m_\phi} \right) \implies \frac{\Delta f}{f} \sim 10^{-6}$$

$$l_{\text{coh}} \sim \frac{2\pi}{m_\phi v_{\text{vir}}} \sim \frac{2\pi \cdot 10^3}{m_\phi} = 10^3 \lambda_{\text{Compton}}$$
Non-Cosmological Sources of Exotic Bosons

- Mediators of fifth-forces and inter-conversion with SM particles

\[
\begin{align*}
\text{\(f_1\)} & \quad \text{\(f_1\)} \\
\text{\(\varphi\)} & \\
\text{\(f_2\)} & \quad \text{\(f_2\)}
\end{align*}
\]

- Emission from stars, supernovae and white dwarves

\[
\begin{align*}
\gamma & \quad \varphi \\
\text{\(B\)} & \quad B
\end{align*}
\]

- Non-cosmological phenomena assist in DM searches by ruling out large regions of physical parameter space
Low-mass Spin-0 Dark Matter

Pseudoscalars (Axions, ALPs): *Odd-parity*

→ Oscillating spin-dependent effects
 - Atomic magnetometry
 - Ultracold neutrons
 - Solid-state magnetometry

 Scalars: *Even-parity*

→ ‘Slow’ evolution and oscillating variation of fundamental constants
 - Atomic clocks
 - Highly-charged ions
 - Molecules
 - Nuclear clocks
 - Laser interferometers
Low-mass Spin-0 Dark Matter

Pseudoscalars (Axions, ALPs): Odd-parity

→ Oscillating spin-dependent effects
 • Atomic magnetometry
 • Ultracold neutrons
 • Solid-state magnetometry
“Axion Wind” Spin-Precession Effect

[Flambaum, talk at Patras Workshop, 2013], [Graham, Rajendran, PRD 88, 035023 (2013)],
[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Motion of Earth through galactic axion dark matter gives rise to the interaction of fermion spins with a time-dependent pseudo-magnetic field $B_{\text{eff}}(t)$, producing spin-precession effects.

\[\mathcal{L}_{\text{eff}} = -\frac{C_f}{2f_a} \partial_i [a_0 \cos(\varepsilon_a t - p_a \cdot r)] \bar{f} \gamma^i \gamma^5 f \]

\[\Rightarrow H_{\text{eff}}(t) \sim \frac{C_f a_0}{2f_a} \sin(m_a t) \ p_a \cdot \sigma_f \]

$B_{\text{eff}}(t)$
Axion-Induced Oscillating Spin-Gravity Coupling

[Stadnik, Flambaum, *PRD* 89, 043522 (2014)]

Distortion of axion field by gravitational field of Sun or Earth induces oscillating spin-gravity couplings.

\[\mathcal{L}_{af} = \frac{C_f}{2f_a} \partial_i [a_0(r) \cos(\varepsilon_a t - p_a \cdot r)] \bar{f} \gamma^i \gamma^5 f \]

\[\Rightarrow H'_\text{eff}(t) \propto \frac{C_f a_0}{f_a} \sin(m_a t) \, \sigma_f \cdot \hat{r} \]

Spin-axion momentum and axion-induced oscillating spin-gravity couplings to nucleons may have isotopic dependence \((C_p \neq C_n)\) – calculations of proton and neutron spin contents for nuclei of experimental interest have been performed, see, e.g., [Stadnik, Flambaum, *EPJC* 75, 110 (2015)].
Axion-Induced Oscillating Neutron EDM

[Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)],
[Pospelov, Ritz, PRL 83, 2526 (1999)], [Graham, Rajendran, PRD 84, 055013 (2011)]

An oscillating axion field induces an oscillating neutron electric dipole moment via its coupling to gluons.*

\[\mathcal{L}_{a gg} = \frac{a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} G \tilde{G} \quad d_n(t) \approx 2.4 \times 10^{-16} \frac{a_0}{f_a} \cos(m_a t) \ e \cdot \text{cm} \]

\[g_{\pi N N} = 13.5 \quad \tilde{g}_{\pi N N}^{(0)} \approx -0.027a_0 \cos(m_a t)/f_a \]

* \(d_n\) receives main contribution from the chirally enhanced process above, rather than from the process with the external photon line attached to the internal proton line.
Axion-Induced Oscillating Atomic and Molecular EDMs

[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)],
[Stadnik, Flambaum, PRD 89, 043522 (2014)]

Oscillating atomic and molecular EDMs are induced through oscillating Schiff ($J \geq 0$) and oscillating magnetic quadrupole ($J \geq 1/2$, no Schiff screening) moments of nuclei, which arise from intrinsic oscillating nucleon EDMs and oscillating P,T-violating intranuclear forces* (larger by $\sim 1–3$ orders of magnitude).

$$
\mathcal{L}_{a_{gg}} = \frac{a_0 \cos(m_a t)}{f_a} \frac{g^2}{32\pi^2} \frac{1}{G \tilde{G}}
$$

$$
d(^{199}\text{Hg})(t) \approx -1.8 \times 10^{-19} \frac{a_0}{f_a} \cos(m_a t) \text{ e \cdot cm}
$$

$$
d(^{225}\text{Ra})(t) \approx 9.3 \times 10^{-17} \frac{a_0}{f_a} \cos(m_a t) \text{ e \cdot cm}
$$

* P,T-odd intranuclear forces arise at tree level, i.e., no loop suppression factor (c.f., $d_{n,p}$ which arise at 1-loop level), and typically produce sizeable enhancement factors of nuclear origin (especially large in deformed nuclei with close-level and collective enhancements).
Axion-Induced Oscillating EDMs of Paramagnetic Atoms and Molecules

In *paramagnetic* atoms and molecules, **oscillating EDMs** are also induced through *mixing of opposite-parity atomic/molecular states* via the interaction of the oscillating axion field with atomic/molecular electrons.

\[
\mathcal{L}_{aee} = -\frac{C_e}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{e} \gamma^0 \gamma^5 e \\
d_{\text{atomic}}(t) \sim -\frac{C_e a_0 m_a^2 \alpha_s}{f_a e} \cos(m_a t)
\]
Axion-Induced Oscillating PNC Effects in Atoms and Molecules

Interaction of the oscillating axion field with atomic/molecular electrons mixes opposite-parity states, producing oscillating PNC effects in atoms and molecules.

$$\mathcal{L}_{aee} = -\frac{C_e}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{e} \gamma^0 \gamma^5 e \quad E_{\text{PNC}}(t) = -\frac{C_e a_0 m_a}{2f_a} \sin(m_a t) K_{\text{PNC}}$$

Axion-induced oscillating atomic PNC effects are determined entirely by relativistic corrections (in the non-relativistic approximation, $K_{\text{PNC}} = 0$)*.

* Compare with the Standard Model *static* atomic PNC effects in atoms, which are dominated by Z^0-boson exchange between atomic electrons and nucleons in the nucleus, where the effects arise already in the non-relativistic approximation, see, e.g., [Ginges, Flambaum, *Phys. Rept.* 397, 63 (2004)] for an overview.
Axion-Induced Oscillating Nuclear Anapole Moments

Interaction of the oscillating axion field with nucleons in nuclei induces **oscillating nuclear anapole moments**.

\[
\mathcal{L}_{aN} = -\frac{C_N}{2f_a} \partial_0 [a_0 \cos(m_a t)] \bar{N} \gamma^0 \gamma^5 N
\]

\[
a(t) = -\frac{C_N a_0 m_a}{f_a} \frac{\pi e \mu}{m} \frac{K I}{I(I + 1)} \langle r^2 \rangle \sin(m_a t)
\]
Search for Axion Dark Matter with Ultracold Neutrons

Ongoing work with the nEDM collaboration (Ayres, Harris, Kirch, Rawlik et al.)

Experimental overview: Tuesday talk (10:15) by Michal Rawlik

- Ongoing search for “axion wind” spin-precession effect and axion-induced oscillating neutron EDM by the nEDM collaboration at PSI and Sussex, using a dual neutron/199Hg co-magnetometer to measure the weighted combination of neutron and 199Hg Larmor precession frequencies in an applied B-field (and also in applied E-field for oscillating d_n):

$$\Delta \omega(t) \equiv \omega_{L,n}(t) - \frac{\gamma_n}{\gamma_{Hg}} \omega_{L,Hg}(t)$$

- Exact frequency of oscillation is unknown: $\omega = m_a$

$(10^{-22} \text{ eV} \leq m_a \leq 0.1 \text{ eV} \Rightarrow 10^{-8} \text{ Hz} \leq f \leq 10^{13} \text{ Hz})$, with $\Delta f/f \sim 10^{-6}$.

* $f \sim 10^{-8} \text{ Hz}$ corresponds to $T \sim 1 \text{ year}$.
Expected Sensitivity (Interaction of Axion Dark Matter with Nucleons)

Ongoing work with the nEDM collaboration (Ayres, Harris, Kirch, Rawlik et al.)

Experimental overview: Tuesday talk (10:15) by Michal Rawlik

\[
\mathcal{L}_{aNN} = -\frac{C_N}{2f_a} \partial_\mu a \bar{N} \gamma^\mu \gamma^5 N
\]

\[
\log_{10}\left(\frac{m_a}{\text{eV}}\right)
\]

\[
\log_{10}\left(\frac{C_N}{f_a}\right)
\]
Expected Sensitivity (Interaction of Axion Dark Matter with Gluons)

Ongoing work with the nEDM collaboration (Ayres, Harris, Kirch, Rawlik et al.)

Experimental overview: Tuesday talk (10:15) by Michal Rawlik

\[\mathcal{L}_{aGG} = \frac{C_G}{f_a} \frac{g^2}{32\pi^2} a G_\mu^a \bar{G}_a^{\mu
u} \]

Big Bang nucleosynthesis bounds

Expected sensitivity (oscillating nEDM)
Expected Sensitivity (Interaction of Axion Dark Matter with Gluons)

Ongoing work with the nEDM collaboration (Ayres, Harris, Kirch, Rawlik et al.)

Experimental overview: Tuesday talk (10:15) by Michal Rawlik

First results to be published soon!

\[\mathcal{L}_{aGG} = \frac{C_G}{f_a} \frac{g^2}{32\pi^2} a G^\alpha G^\alpha \tilde{G}^{\alpha \mu \nu} \]

Expected sensitivity (oscillating nEDM)
Low-mass Spin-0 Dark Matter

Dark Matter

 Scalars: Even-parity

→ ‘Slow’ evolution and oscillating variation of fundamental constants

• Atomic clocks
• Highly-charged ions
• Molecules
• Nuclear clocks
• Laser interferometers
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, PRL 115, 201301 (2015)]

Consider an oscillating classical scalar field, \(\varphi(t) = \varphi_0 \cos(m\varphi t) \), that interacts with SM fields (e.g., a fermion \(f \)) via quadratic couplings in \(\varphi \).

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \quad \text{c.f.} \quad \mathcal{L}^{\text{SM}}_f = -m_f \bar{f} f \quad \Rightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]
\]

\[
\Rightarrow \quad \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda'_f)^2} \cos^2(m\varphi t) = \frac{\phi_0^2}{2(\Lambda'_f)^2} + \frac{\phi_0^2}{2(\Lambda'_f)^2} \cos(2m\varphi t)
\]

\[
\rho_\varphi = \frac{m^2 \phi^2}{2} \quad \Rightarrow \quad \phi_0^2 \propto \rho_\varphi
\]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 115, 201301 (2015)]

Consider an oscillating classical *scalar* field, $\phi(t) = \phi_0 \cos(m_\phi t)$, that interacts with SM fields (e.g., a fermion f) via *quadratic couplings* in ϕ.

\[
\mathcal{L}_f = -\frac{\phi^2}{(\Lambda_f')^2} m_f \bar{f} f \quad \text{c.f. } \mathcal{L}_f^{\text{SM}} = -m_f \bar{f} f \quad \Rightarrow \quad m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda_f')^2}\right]
\]

\[
\Rightarrow \quad \frac{\delta m_f}{m_f} = \frac{\phi_0^2}{(\Lambda_f')^2} \cos^2(m_\phi t) = \frac{\phi_0^2}{2(\Lambda_f')^2} + \frac{\phi_0^2}{2(\Lambda_f')^2} \cos(2m_\phi t)
\]

‘Slow’ drifts [Astrophysics (high ρ_{DM}): BBN, CMB]

Oscillating variations [Laboratory (high precision)]
Dark Matter-Induced Cosmological Evolution of the Fundamental Constants

[Stadnik, Flambaum, *PRL* 115, 201301 (2015)]

We can consider a wide range of quadratic-in-ϕ interactions with the SM sector:

Photon:

$$\mathcal{L}_\gamma = \frac{\phi^2}{(\Lambda'_\gamma)^2} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \implies \alpha \rightarrow \frac{\alpha}{1 - \phi^2 / (\Lambda'_\gamma)^2} \simeq \alpha \left[1 + \frac{\phi^2}{(\Lambda'_\gamma)^2} \right]$$

Fermions:

$$\mathcal{L}_f = -\frac{\phi^2}{(\Lambda'_f)^2} m_f \bar{f} f \implies m_f \rightarrow m_f \left[1 + \frac{\phi^2}{(\Lambda'_f)^2} \right]$$

W and Z Bosons (mediators of weak interactions):

$$\mathcal{L}_V = \frac{\phi^2}{(\Lambda'_V)^2} \frac{M_V^2}{2} V_\nu V^\nu \implies M_V^2 \rightarrow M_V^2 \left[1 + \frac{\phi^2}{(\Lambda'_V)^2} \right]$$
Dark Matter-Induced Oscillating Variation of the Fundamental Constants

Also possible to have linear-in-ϕ interactions with the SM sector, which may be generated, e.g., through the super-renormalisable interaction of ϕ with the Higgs boson* [Piazza, Pospelov, PRD 82, 043533 (2010)]:

$$\mathcal{L}_H = -A\phi H^\dagger H$$

\[
\begin{align*}
m_f &\to m_f \left[1 - \frac{A g_{hff} \langle h \rangle \phi}{m_f m_h^2} \right] \\
\alpha &\to \alpha \left[1 + \frac{4 A g_{h\gamma\gamma} \phi}{m_h^2} \right]
\end{align*}
\]

* Produces logarithmically-divergent corrections to $(m_\phi)^2$, i.e., technically natural for $A < m_\phi$. Minimum of potential is stable (without adding extra ϕ^4 terms) for $(A/m_\phi)^2 < 2\lambda$.

\[
\begin{align*}
\text{Diagram 1:} \\
\text{Diagram 2:}
\end{align*}
\]
Generic Constraints on Quadratic Scalar Interactions

[Olive, Pospelov, PRD 77, 043524 (2008)]

Gravitational test constraints (fifth-force searches):
Exchange of a pair of virtual spin-0 bosons produces an attractive $\sim 1/r^3$ potential* between two SM particles.

\[\Lambda_p' > 2 \text{ TeV} \]

* Similar to the 1-loop quantum correction to Newton’s Law of Gravitation, see, e.g., [Kirilin, Khriplovich, JETP 95, 981 (2002)] and [Bjerrum-Bohr, Donoghue, Holstein, PRD 67, 084033 (2003)], and to theories with two large extra dimensions.
Generic Constraints on Quadratic Scalar Interactions

[Olive, Pospelov, PRD 77, 043524 (2008)]

Astrophysical constraints (stellar energy loss bounds): Pair annihilation of photons and bremsstrahlung-like emission processes can produce pairs of ϕ-quanta, increasing stellar energy loss rate.

\[
\gamma + \gamma \to \phi + \phi \quad \Lambda'_\gamma > 3 \text{ TeV}
\]

\[
N + N \to N + N + \phi + \phi \quad \Lambda'_N > 15 \text{ TeV}
\]
Astrophysical Constraints on ‘Slow’ Drifts in Fundamental Constants Induced by Scalar Dark Matter (BBN)

- Largest effects of scalar dark matter are in the early Universe (highest $\rho_{DM} \Rightarrow$ highest φ_0^2).
- Earliest cosmological epoch that we can probe is Big Bang nucleosynthesis (from $t_{\text{weak}} \approx 1\text{s}$ until $t_{\text{BBN}} \approx 3\text{ min}$).
- Primordial ^4He abundance is sensitive to relative abundance of neutrons to protons (almost all neutrons are bound in ^4He by the end of BBN).

Weak interactions: freeze-out of weak interactions occurs at $t_{\text{weak}} \approx 1\text{s}$ ($T_{\text{weak}} \approx 0.75\text{ MeV}$).

\[
\begin{align*}
 p + e^- &\rightleftharpoons n + \nu \\
 n + e^+ &\rightleftharpoons p + \bar{\nu}
\end{align*}
\]

\[
\left(\frac{n}{p} \right)_{\text{weak}} = e^{-(m_n - m_p)/T_{\text{weak}}}
\]
BBN reactions: reaction channels that produce 4He last until $t_{\text{BBN}} \approx 3$ min ($T_{\text{BBN}} \approx 60$ keV).

$$\frac{\Delta Y_p(^4\text{He})}{Y_p(^4\text{He})} \approx \frac{\Delta(n/p)_{\text{weak}}}{(n/p)_{\text{weak}}} - \Delta \left[\int_{t_{\text{weak}}}^{t_{\text{BBN}}} \Gamma_n(t) dt \right] \Rightarrow \text{Limits on} \, \Lambda'_X$$
Astrophysical Constraints on ‘Slow’ Drifts in Fundamental Constants Induced by Scalar Dark Matter (CMB)

[Stadnik, Flambaum, *PRL* 115, 201301 (2015)]

- Weaker astrophysical constraints come from CMB measurements (lower ρ_{DM}).
- Variations in α and m_e at the time of electron-proton recombination affect the ionisation fraction and Thomson scattering cross section, $\sigma_{\text{Thomson}} = \frac{8\pi\alpha^2}{3m_e^2}$, changing the mean-free-path length of photons at recombination and leaving distinct signatures in the CMB angular power spectrum.

\[
\Lambda'_{\gamma} \gtrsim \frac{1 \text{ eV}^2}{m_{\phi}}, \quad \Lambda'_e \gtrsim \frac{0.6 \text{ eV}^2}{m_{\phi}}
\]
In the laboratory, we can search for oscillating variations in the fundamental constants induced by scalar DM, using clock frequency comparison measurements.

\[
\frac{\delta (\omega_1/\omega_2)}{\omega_1/\omega_2} \propto \sum_X (K_{X,1} - K_{X,2}) \cos (\omega t)
\]

Exact frequency of oscillation is unknown: \(\omega = m_\phi \) (linear) or \(\omega = 2m_\phi \) (quadratic) \([10^{-22} \text{ eV} \leq m_\phi \leq 0.1 \text{ eV} \Rightarrow 10^{-8} \text{ Hz*} \leq f \leq 10^{14} \text{ Hz}]\), with \(\Delta f/f \sim 10^{-6} \).

* \(f \sim 10^{-8} \text{ Hz} \) corresponds to \(T \sim 1 \text{ year} \).
Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter

- Alternatively, we can compare *interferometer arm length* with *photon wavelength*. LIGO enhancement \(\sim 10^{14} \).
- Accumulated phase in an arm, \(\Phi = \omega L/c \), changes if the fundamental constants change (\(L \sim Na_B \) and \(\omega_{\text{atomic}} \) depend on the fundamental constants).

\[
\Phi = \frac{\omega L}{c} \propto \left(\frac{e^2}{a_B \hbar} \right) \left(\frac{Na_B}{c} \right) = Na = \Rightarrow \frac{\delta \Phi}{\Phi} \approx \frac{\delta \alpha}{\alpha}
\]

- Multiple reflections enhance observable effects due to variation of the fundamental constants by the effective mean number of passages \(N_{\text{eff}} \) (e.g., \(N_{\text{eff}} \sim 10^5 \) in a strontium clock – silicon cavity interferometer).
Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter

Calculations performed by Flambaum group and co-workers (>100 systems!)

<table>
<thead>
<tr>
<th>System</th>
<th>Λ'_y</th>
<th>Λ'_e</th>
<th>Λ'_N</th>
<th>Λ'_q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic (electronic)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atomic (hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Highly charged ionic</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Molecular (rotational/hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Molecular (fine-structure/vibrational)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Molecular (Ω-doubling/hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nuclear (e.g., 229Th)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Laser interferometer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Laboratory Searches for Oscillating Variations in Fundamental Constants Induced by Scalar Dark Matter

<table>
<thead>
<tr>
<th>System</th>
<th>Laboratory</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{162,164}\text{Dy}/^{133}\text{Cs}$</td>
<td>UC Berkeley/Mainz</td>
<td>Van Tilburg, Leefer, Bougas, Budker, PRL 115, 011802 (2015);</td>
</tr>
<tr>
<td>$^{87}\text{Rb}/^{133}\text{Cs}$</td>
<td>LNE-SYRTE Paris</td>
<td>Hees, Guena, Abgrall, Bize, Wolf, PRL 117, 061301 (2016);</td>
</tr>
</tbody>
</table>
Constraints on Quadratic Interaction of Scalar Dark Matter with the Photon

BBN, CMB, Dy and Rb/Cs constraints:
15 orders of magnitude improvement!

\[\mathcal{L}_\gamma = \frac{\phi^2}{(\Lambda'_\gamma)^2} \frac{F_{\mu\nu}F^{\mu\nu}}{4} \]

Supernova energy loss bounds and fifth-force searches
Constraints on Quadratic Interactions of Scalar Dark Matter with Light Quarks

BBN and Rb/Cs constraints:

\[\mathcal{L}_q = -\frac{\phi^2}{(\Lambda'_q)^2} m_q \bar{q}q \]

Planck scale

\[\log \left(\frac{\Lambda'_q}{\text{GeV}} \right) \]

\[\log \left(\frac{m_\phi}{\text{eV}} \right) \]

BBN

Rb/Cs

Supernova energy loss bounds and fifth-force searches
Constraints on Quadratic Interaction of Scalar Dark Matter with the Electron

BBN and CMB constraints:
[Stadnik, Flambaum, *PRL* 115, 201301 (2015)]

\[
\mathcal{L}_e = -\frac{\phi^2}{(\Lambda'_e)^2} m_e \bar{e}e
\]

- **Planck scale**
- **BBN**
- **CMB**
- **Astrophysical bounds and fifth-force searches**
Constraints on Quadratic Interactions of Scalar Dark Matter with W and Z Bosons

$\mathcal{L}_V = \frac{\phi^2}{(\Lambda'_V)^2} \frac{M_V^2}{2} V_\nu V^{\nu}$

BBN constraints:
[Stadnik, Flambaum, PRL 115, 201301 (2015)]
Constraints on Linear Interaction of Scalar Dark Matter with the Higgs Boson

Dy and Rb/Cs constraints:
[Stadnik, Flambaum, PRA 94, 022111 (2016)]

\[\mathcal{L}_H = -A\phi H^\dagger H \]
Yukawa-type Fifth-Forces

Yukawa-type interactions, e.g., between a spin-0 boson ϕ and a SM fermion f, produce an attractive Yukawa-type potential between two fermions:

$$L_{\text{int}} = -\frac{\phi}{\Lambda_f} m_f \bar{f} f$$

$$\Rightarrow V(r) = -\left(\frac{m_f}{\Lambda_f}\right)^2 \frac{e^{-m_\phi r}}{4\pi r}$$

Yukawa-type fifth-forces are traditionally sought for with measurements of vector quantities, usually the difference in acceleration of two test bodies in the presence of a massive body (Earth or Sun):

- Torsion pendulum experiments
- Lunar laser ranging
- Atom interferometry
Variation of Fundamental Constants Induced by a Massive Body

Consider the Yukawa-type interactions again:

$$\mathcal{L}_{\text{int}} = - \sum_f \frac{\phi}{\Lambda_f} m_f \bar{f} f + \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4}$$

The equations of motion for ϕ read:

$$\left(\partial_\mu \partial^\mu + m_\phi^2 \right) \phi = - \sum_f \frac{m_f \bar{f} f}{\Lambda_f} + \frac{F_{\mu\nu} F^{\mu\nu}}{4\Lambda_\gamma}$$

SM fields source ϕ: $\phi(r) \propto \frac{e^{-m_\phi r}}{r}$

$$\Rightarrow \frac{\delta m_f}{m_f} = \frac{\phi}{\Lambda_f} \propto \frac{e^{-m_\phi r}}{r}, \quad \frac{\delta \alpha}{\alpha} \propto \frac{\phi}{\Lambda_\gamma} \propto \frac{e^{-m_\phi r}}{r}$$
Variation of Fundamental Constants Induced by a Massive Body

Varying the distance away from a massive body hence alters the fundamental constants, in the presence of Yukawa-type interactions:

$$\frac{\delta m_f}{m_f} \propto \frac{e^{-m\phi r}}{r}, \quad \frac{\delta \alpha}{\alpha} \propto \frac{e^{-m\phi r}}{r}$$

We can search for such alterations in the fundamental constants, using **clock frequency comparison measurements** (i.e., *scalar* quantities), **in the presence of a massive body at two different distances** away from the clock pair:

- Sun ($e = 0.0167$)
- Moon ($e \approx 0.05$, with seasonal variation and effect of finite Earth size)
- Massive objects in the laboratory (e.g., moveable 300kg Pb mass)
Constraints on Linear Yukawa Interaction of a Scalar Boson with the Photon

\[\mathcal{L}_\gamma = \frac{\phi}{\Lambda_\gamma} \frac{F_{\mu\nu} F^{\mu\nu}}{4} \]

Diagram:
- Atomic spectroscopy (Oscillating DM)
- Sun
- Moon
- Pb mass
- Torsion pendulum

Logarithmic scale:
- \(\log_{10}(m_\phi / \text{eV}) \)
- \(\log_{10}(\Lambda_\gamma / \text{GeV}) \)
Constraints on Linear Yukawa Interaction of a Scalar Boson with the Electron

\[\mathcal{L}_e = -\frac{\phi}{\Lambda_e} m_e \bar{e} e \]

- Atomic spectroscopy
- Torsion pendulum
Constraints on Linear Yukawa Interaction of a Scalar Boson with the Nucleons

\[\mathcal{L}_N = -\frac{\phi}{\Lambda_N} m_N \bar{N} N \]

- Lunar laser ranging
- Atomic spectroscopy
- Torsion pendulum
Constraints on a Combination of Linear Yukawa Interactions of a Scalar Boson

\[L_{\text{int}} = \frac{\phi}{\Lambda_{\gamma}} \frac{F_{\mu\nu} F^{\mu\nu}}{4} - \frac{\phi}{\Lambda_N} m_N \bar{N} N \]

How to Probe Weaker Interactions?

(1) Use different systems in the laboratory.

<table>
<thead>
<tr>
<th>System</th>
<th>Λ_{γ}</th>
<th>Λ_{e}</th>
<th>Λ_{p}</th>
<th>Λ_{q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic (electronic)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atomic (hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Highly charged ionic</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Molecular (rotational/hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Molecular (fine-structure/vibrational)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Molecular (Ω-doubling/hyperfine)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nuclear (e.g., 229Th)</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Laser interferometer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
How to Probe Weaker Interactions?

(2) Implement different experimental geometries (e.g., the size of the effect may be increased by up to 4 orders of magnitude by measuring the difference in ω_1/ω_2 in the laboratory and on a space probe incident towards the Sun).
Conclusions

• New classes of dark matter effects that are **linear** in the underlying interaction constant (traditionally-sought effects of dark matter scale as second or fourth power)

• **15 orders of magnitude improvement** on quadratic interactions of scalar dark matter with the photon, electron, and light quarks \((u,d)\)

• Improved limits on linear interaction of scalar dark matter with the Higgs boson

• **First limits** on linear and quadratic interactions of scalar dark matter with the \(W\) and \(Z\) bosons

• Enormous potential for low-energy experiments with atoms, molecules and ultracold neutrons to search for dark matter with unprecedented sensitivity

• **New results to be published soon!**
Acknowledgements

We would like to thank the following people for helpful discussions:

Bruce Allen, Nicholas Ayres, Francois Bondu, Julian Berengut, Dmitry Budker, Vladimir Dzuba, Federico Ferrini, Peter Graham, Gleb Gribakin, Hartmut Grote, Phillip Harris, Michael Hohensee, Nils Huntemann, Klaus Kirch, Sergey Klimenko, Nathan Leefer, Giovanni Losurdo, David Marsh, Holger Muller, Guenakh Mitselmakher, Ekkehard Peik, Maxim Pospelov, Surjeet Rajendran, Michal Rawlik, Fritz Riehle, Benjamin Roberts, Ken Van Tilburg, Yvonne Wong and Jun Ye
Core-polarisation Corrections to *ab initio* Nuclear Shell Model Calculations

[Stadnik, Flambaum, *EPJC* 75, 110 (2015)]

Minimal model correction scheme:

\[
\left(\langle s_p^z \rangle - \langle s_p^z \rangle^0 \right) = - \left(\langle s_n^z \rangle - \langle s_n^z \rangle^0 \right) = \frac{\mu - \mu^0}{g_p - g_n}
\]

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Ref.</th>
<th>Ab initio model</th>
<th>(\langle s_n^z \rangle^0)</th>
<th>(\langle s_p^z \rangle^0)</th>
<th>(\langle s_n^z \rangle)</th>
<th>(\langle s_p^z \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{125})Te</td>
<td>[69]</td>
<td>Bonn A</td>
<td>0.287</td>
<td>0.001</td>
<td>0.274</td>
<td>0.014</td>
</tr>
<tr>
<td>(^{125})Te</td>
<td>[69]</td>
<td>Nijmegen II</td>
<td>0.323</td>
<td>-0.0003</td>
<td>0.297</td>
<td>0.026</td>
</tr>
<tr>
<td>(^{127})I</td>
<td>[69]</td>
<td>Bonn A</td>
<td>0.075</td>
<td>0.309</td>
<td>0.071</td>
<td>0.313</td>
</tr>
<tr>
<td>(^{127})I</td>
<td>[69]</td>
<td>Nijmegen II</td>
<td>0.064</td>
<td>0.354</td>
<td>0.100</td>
<td>0.318</td>
</tr>
<tr>
<td>(^{127})I</td>
<td>[70]</td>
<td>Bonn-CD</td>
<td>0.030</td>
<td>0.418</td>
<td>0.108</td>
<td>0.340</td>
</tr>
<tr>
<td>(^{129})Xe</td>
<td>[69]</td>
<td>Bonn A</td>
<td>0.359</td>
<td>0.028</td>
<td>0.337</td>
<td>0.050</td>
</tr>
<tr>
<td>(^{129})Xe</td>
<td>[69]</td>
<td>Nijmegen II</td>
<td>0.300</td>
<td>0.0128</td>
<td>0.308</td>
<td>0.005</td>
</tr>
<tr>
<td>(^{129})Xe</td>
<td>[70]</td>
<td>Bonn-CD</td>
<td>0.273</td>
<td>-0.0019</td>
<td>0.256</td>
<td>0.015</td>
</tr>
<tr>
<td>(^{131})Xe</td>
<td>[69]</td>
<td>Bonn A</td>
<td>-0.227</td>
<td>-0.009</td>
<td>-0.196</td>
<td>-0.040</td>
</tr>
<tr>
<td>(^{131})Xe</td>
<td>[69]</td>
<td>Nijmegen II</td>
<td>-0.217</td>
<td>-0.012</td>
<td>-0.187</td>
<td>-0.042</td>
</tr>
<tr>
<td>(^{131})Xe</td>
<td>[68]</td>
<td>QTDA</td>
<td>-0.236</td>
<td>-0.041</td>
<td>-0.235</td>
<td>-0.042</td>
</tr>
<tr>
<td>(^{131})Xe</td>
<td>[70]</td>
<td>Bonn-CD</td>
<td>-0.125</td>
<td>-0.00069</td>
<td>-0.122</td>
<td>-0.004</td>
</tr>
<tr>
<td>(^{133})Cs</td>
<td>[70]</td>
<td>Bonn-CD</td>
<td>0.021</td>
<td>-0.318</td>
<td>-0.076</td>
<td>-0.221</td>
</tr>
</tbody>
</table>
Take a simple scalar field and give it a self-potential, e.g., \(V(\phi) = \lambda(\phi^2-v^2)^2 \). If \(\phi = -v \) at \(x = -\infty \) and \(\phi = +v \) at \(x = +\infty \), then a stable **domain wall** will form in between, e.g., \(\phi(x) = v \tanh(xm_\phi) \) with \(m_\phi = \lambda^{1/2} v \).

The characteristic “span” of this object is \(d \sim 1/m_\phi \), and it is carrying energy per area \(\sim v^2/d \sim v^2 m_\phi \). **Networks of such topological defects can give contributions to dark matter/dark energy and act as seeds for structure formation.**

0D object – a Monopole

1D object – a String

2D object – a Domain wall

\(d \sim 1/m_\phi \)
Topological Defect Dark Matter

Topological defects may have large amplitude, large transverse size (possibly macroscopic) and large distances (possibly astronomical) between them.

=> Signatures of topological defects are very different from other forms of dark matter!

Topological defects produce transient-in-time effects.
Searching for Topological Defects

Detection of topological defects via transient-in-time effects requires searching for **correlated signals** using a terrestrial or space-based **network of detectors**.

Proposals include:

Magnetometers [Pospelov et al., *PRL 110*, 021803 (2013)]

Pulsar Timing [Stadnik, Flambaum, *PRL 113*, 151301 (2014)]

Atomic Clocks [Derevianko, Pospelov, *Nature Physics* 10, 933 (2014)]

Laser Interferometers [Stadnik, Flambaum, *PRL 114*, 161301 (2015); *PRA 93*, 063630 (2016)]