Towards Parity Violation Measurements in Laser Trapped Francium Isotopes G. Gwinner — University of Manitoba

ISAC + actinide target: great place to study fundamental symmetries in heavy atoms

Atoms/nuclei provide access to fundamental symmetries, should be viewed as complementary to high energy approaches

	Atom	Nucleus
Charged current weak interactions, β-decay	new powerful techniques (atom traps)	rich selection of spin, isospin, half-life
Neutral current weak interactions APNC anapoles	tremendous accuracy of atomic methods (lasers, microwaves) neutral (strong external fields) traps, cooling	huge enhancement of effects (high Z, deformation) over elementary particles rich selection of spin, isospin, Z, N, deformation
Permanent electric dipole moments		
Lorentz-symmetry & CPT violation	accuracy	selection of spin, Z, N

Some of most promising new candidates are heavy, radioactive systems (Rn, Fr) Radioactive beam facilities are crucial

Demanding, long experiments \rightarrow strong motivation for dedicated beam delivery

Atomic Parity Violation

Z-boson exchange between atomic electrons and the quarks in the nucleus

nucl. spin *independent* interaction: coherent over all nucleons H_{PNC} mixes electronic s & p states $< n's' | H_{PNC} | np > \propto Z^3$ Drive $s \rightarrow s E1$ transition!

Cs: 6s \rightarrow 7s osc. strength f \approx 10⁻²² use interference: $f \propto |A_{PC} + A_{PNC}|^2$ $\approx A_{PC}^2 + A_{PC} A_{PNC} \cos \varphi$ The nuclear-spin independent APNC Hamiltonian for a pointlike nucleus:

$$H_{\rm PNC}^{nsi} = \frac{G}{\sqrt{2}} \frac{Q_W}{2} \gamma_5 \,\delta(\mathbf{r}).$$

$$Q_W = 2(\kappa_{1p}Z + \kappa_{1n}N)$$

$$\kappa_{1p} = \frac{1}{2}(1 - 4\sin^2\theta_W), \kappa_{1n} = -\frac{1}{2}$$

The "nuclear weak charge" contains the weak interaction physics

$$< n'L'|H_{PNC}^{nsi}|nL > = \frac{G}{\sqrt{2}}\frac{Q_w}{2} < n'L'|\delta(r)\vec{\sigma} \cdot \vec{p}|nL >$$

$$\propto < n'L'|\frac{d}{dr}|nL > |_{r=0} \qquad R_{nL} \approx r^L Z^{L+1/2}$$

$$\Rightarrow \text{ at } r = 0 \text{ only } R_{ns}, \frac{d}{dr} R_{np} \text{ are finite}$$

 H_{PNC} mixes s and p states

 $< ns | H_{PNC}^{IISI} | n' p > \propto Z^{3}$ Bouchiat, 1974

Qweak collaboration (talk by R. Carlini, CIPANP 2015)

APNC uniquely provides the orthogonal constraint ($C_{1u} + C_{1d}$)

D. Androic et al., Phys. Rev. Lett. 111, 141803 (2013)

Implications on 'new physics' from the Boulder Cs experiment (adapted from D. Budker, WEIN 98)

New Physics	Parameter	Constraint from atomic PNC	Direct constraints from HEP
Oblique radiative corrections	<i>S</i> +0.006 <i>T</i>	S = -0.56(60) *	$S=-0.13 \pm 0.1 (-0.08)$ T=-0.13 ± 0.11 (+0.09)
Z _x -boson in SO(10) model	$M(\mathbf{Z}_{\mathbf{x}})$	> 1.4 TeV *	> 820 GeV LHC > 2 (→ 5) TeV
Leptoquarks	M_S	>0.7 TeV	> 256 GeV, >1200 GeV indir

Why are low-energy experiments such as APV relatively sensitive to new physics at higher energy scales?

APNC can also constrain other scenarios, e.g. couplings to new light particles (e.g. Bouchiat & Fayet 05)

Parity violation from dark bosons [Davoudiasl PRD 89, 095006 (2014)]

The Boulder Cs Experiment

Why Cs ? Not particularly heavy...

It's the heaviest, stable 'simple atom'

Precise experiments in TI (and Bi, Pb) have been limited by their more complicated atomic structure!

Use francium (Z=87)

atomic structure (theory) understood at the same level as in Cs

APNC effect 18 x larger!

Problems: (i) no stable isotope (ii) need to know neutron skin of Fr nucleus (iii) need to know charge radius of Fr nucleus

Answers: (i) go to TRIUMF's actinide target to get loads of Fr, and use trap

(ii) the PREX experiment at Jefferson Lab measures the neutron radius of ²⁰⁸Pb

(iii) new idea to measure nuclear charge radius of unstable elements

A Fr APNC experiment at TRIUMF

- Actinide target will make ISAC a great place to pursue Fr physics such as NSI APNC
- data collection time (purely statistical, no duty factor)
 - 10⁶ trapped atoms, 1.0% APNC: 2.3 hours
 - 10⁷ trapped atoms, 0.1% APNC: 23 hours
 - APNC work can start even with low current on ISAC target!
 - But: most of the time needs to be spent on systematics. So realistically we are talking 100 days or more of beam, spread of more than a year!
- 1% neutron radius measurement in ²⁰⁸Pb with PREX would put a 0.2 % uncertainty on Q_w in ²¹²Fr (Sil 2005)
- atomic theory similar to Cs (0.25%), so progress in this direction required to go beyond Wood et al.
- can expect that all aspects improve over time (already happening: new Cs (alkali) APNC calculations, Porsev 2009, Dzuba 2012)

A Francium APNC Experiment at TRIUMF

neutralizer

The Francium Trapping Facility at TRIUMF/ISAC part 1: online capture trap

The Francium Trapping Facility

- Sep 2012 Sep 2013: first beam, trapping of many isotopes: ^{206m, 206, 207-213, 221}Fr
- Beamline and capture laser trap commissioned
- First physics measurements on allowed transitions → yielded useful info for future APNC

D1 isotope shifts in a string of light francium isotopes

Collister et al., Phys Rev A 90, 052502 (2014) and A 92, 019902(E) (2015)

Benchmarks state-of-the-art atomic theory in Fr by Safranova and others.

Hyperfine anomaly in light francium isotopes

Zhang et al., Phys Rev Lett 115, 042501 (2015)

Reconfirms that in terms of nuclear structure, 208-213 are "good" nuclei for APNC/ anapoles

Photo-ionization cross-section of the 7p3/2 state in francium

Collister et al., accepted for Can J Phys

capture trap

science chamber

Busy doing actual work: J. Behr L. Orozco

Towards parity violation measurements 1. Getting the atoms into a clean environment

capture trap

science chamber

Busy doing actual work: J. Behr L. Orozco

Towards parity violation measurements 1. Getting the atoms into a clean environment

capture trap

≈ 50 % transfer efficiency !

science chamber

Busy doing actual work: J. Behr L. Orozco

Towards parity violation measurements 1. Getting the atoms into a clean environment

Current developments

- August 2016
 - Observed for first time 7s 8s using two-photon spectroscopy
 - Measured DC Stark shift of the 7s 8s transition
- In development
 - reliable laser sources at 506 nm (Fr) and 496 nm (Rb)
 - ultra-stable (100 kHz) ULE cavity to lock those lasers
 - transparent field plates for internal operation of MOT
- Starting soon
 - UHV-compatible power-buildup cavity to enhance laser power for 7s - 8s spectroscopy

$A_{7s \to 8s} = E1_{\text{stark}} + M1 + E1_{\text{pnc}}$

- One of the faintest transitions observed in atoms
- MI_{rel} hard to calculate (20-30 % discrepancy to expt. in Cs)
- "Most sensitive transition to the accuracy of the relativistic description of an atomic system" (Savukov et al, PRL 1999)
- So far, only measured in Cs, in context of APNC measurements

FrPNC collaboration

TRIUMF:

John Behr, Alexandre Gorelov, Mukut Kalita, Matt Pearson, Michael Tandecki

University of Manitoba Austin deHart, Gerald Gwinner, Michael Kossin, Andrew Senchuk, Robert Collister, Kyle Shiells

University of Maryland Luis Orozco, Jiehang Zhang

University of William and Mary Seth Aubin

Autonomous University of San Luis Potosi Eduardo Gomez Graduate student Postdoc/research associate Former member

Funded by:

Canada: NSERC TRIUMF via NRC

USA: NSF, DOE

The glow of a million francium atoms (not really)

Photo: M. Kossin