Flavor Structure of the Nucleon Sea from Lattice QCD

Jiunn-Wei Chen

National Taiwan U. \& MIT

Collaborators: Huey-Wen Lin, Saul D. Cohen, Xiangdong Ji, Jianhui Zhang arXiv: $1402.1462+1603.06664$

Parton Distribution Functions (PDF)---an Infinite-Body Problem

- The number of quark anti-quark pairs diverges (manifestation of non-perturbative nature of the problem)

One Possible Solution...

- Lattice QCD: making the degree of freedom finite by discretizing the space time
- Goal: Computing the x-dependence of PDF's from first principles (QCD).

Past Limitation

- Traditional approach: can only calculate lower moments PDFs.
- Still first principle, carried out successfully: close to using physical parameters---highly non-trivial and demanding in computing power.
- However, it also means the community has reached the limit on what one can learn from the lower moments.

New Hopes

- Smeared sources: Davoudi \& Savage
- Current-current correlators: K.-F. Liu \& S.-J. Dong; Braun \& Müller; Detmold \& Lin
- Xiangdong Ji (Phys. Rev. Lett. 110 (2013) 262002): quasi-PDF: computing the x -dependence directly.

Lattice PDF:

from Moments to the Sea

- Quark PDF in a proton:

$$
\left(\lambda^{2}=0\right)
$$

$q\left(x, \mu^{2}\right)=\int \frac{d \xi^{-}}{4 \pi} e^{i x \xi^{-} P^{+}}\langle P| \bar{\psi}(0) \lambda \cdot \gamma \Gamma \psi\left(\xi^{-} \lambda\right)|P\rangle$

- Euclidean lattice: light cone operators cannot be distinguished from local operators
- Moments of PDF given by local twist-2 operators; LPDF limited to first few moments; Sea quarks cannot be isolated
- Quark PDF in a proton: $\quad\left(\lambda^{2}=0\right)$
$q\left(x, \mu^{2}\right)=\int \frac{d \xi^{-}}{4 \pi} e^{i x \xi^{-} P^{+}}\langle P| \bar{\psi}(0) \lambda \cdot \gamma \Gamma \psi\left(\xi^{-} \lambda\right)|P\rangle$
- Boost invariant in the z-direction, rest frame OK
- Quark bilinear op. always on the light cone
- What if the quark bilinear is slightly away from the light cone (space-like) in the proton rest frame?

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.

Review: Ji's LPDF

$$
\begin{array}{r}
\widetilde{q}\left(x, \mu^{2}, P^{z}\right)=\int \frac{d z}{4 \pi} e^{-i x z P^{z}}\langle P| \bar{\psi}(0) \lambda \cdot \gamma \Gamma \psi(z \lambda)|P\rangle \\
\equiv \int \frac{d z}{2 \pi} e^{-i x z P^{z}} h\left(z P^{z}\right) P^{z} \\
\lambda^{\mu}=(0,0,0,1)
\end{array}
$$

- Taylor expansion yields

$$
\bar{\psi} \lambda \cdot \gamma \Gamma(\lambda \cdot D)^{n} \psi=\lambda_{\mu_{1}} \lambda_{\mu_{2}} \cdots \lambda_{\mu_{n}} O^{\mu_{1} \cdots \mu_{n}}
$$

op. symmetric but not traceless

Review: Ji’s LPDF

$$
\langle P| O^{\left(\mu_{1} \cdots \mu_{n}\right)}|P\rangle=2 a_{n} P^{\left(\mu_{1}\right.} \cdots P^{\left.\mu_{n}\right)}
$$

- LHS: trace, twist- $4 \mathcal{O}\left(\Lambda_{Q C D}^{2} /\left(P^{z}\right)^{2}\right)$ corrections, parametrized in this work
- RHS: trace $\mathcal{O}\left(M^{2} /\left(P^{z}\right)^{2}\right)$.
- One loop matching $\alpha_{s} \ln P^{z}$, OPE

$$
\tilde{q}\left(x, \Lambda, P_{z}\right)=\int \frac{d y}{|y|} Z\left(\frac{x}{y}, \frac{\mu}{P_{z}}, \frac{\Lambda}{P_{z}}\right) q(y, \mu)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}, \frac{M^{2}}{P_{z}^{2}}\right)+\ldots
$$

What do we expect to see on the lattice?

- Suppose LPDF is the CTEQ PDF at $P^{z} \rightarrow \infty$

$$
f_{q}(-|x|)=-f_{\bar{q}}(|x|)
$$

$$
f_{u-d}(\mathrm{x})
$$

in the Fourier Space

Reh

First (isovector) LPDF Computation

- Lattice: $24^{3} \times 64$

$$
a \approx 0.12 \mathrm{fm} \quad L \approx 3 \mathrm{fm}
$$

- Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence)

$$
N_{f}=2+1+1 \quad M_{\pi} \approx 310 \mathrm{MeV}
$$

- Gauge fields/links: hypercubic (HYP) smearing, 461 config.
- $P^{z}=\frac{2 \pi}{L} n=n \times 0.43 \mathrm{GeV} \quad \mathrm{n}=1,2,3 \ldots$

$$
P^{z}=\frac{0.26 n}{a}, n=1,2,3
$$

Quasi-PDF (unpolarized)

$$
P^{z}=\frac{2 \pi}{L} n=n \times 0.43 \mathrm{GeV} \quad \mathrm{n}=1,2,3 .
$$

RG of Wilson Coefficient

$$
\begin{aligned}
\tilde{q}\left(x, \Lambda, P_{z}\right)=\int \frac{d y}{|y|} Z & \left(\frac{x}{y}, \frac{\mu}{P_{z}}, \frac{\Lambda}{P_{z}}\right) q(y, \mu) \\
& +\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}, \frac{M_{N}^{2}}{P_{z}^{2}}\right)+\ldots
\end{aligned}
$$

Xiong, Ji, Zhang, Zhao
(GPD: Ji, Schfer, Xiong, Zhang; Xiong, Zhang) factorization, Linear divergence, lattice PT
(Ma, Qiu; Ishikawa, Ma, Qiu, Yoshida; H.N. Li)

$\mathcal{O}\left(M^{2} /\left(P^{z}\right)^{2}\right)$ Corrections

$$
P^{z}=\frac{2 \pi}{L} n=n \times 0.43 \mathrm{GeV}
$$

- Computed to all orders in $\mathcal{O}\left(M^{2} /\left(P^{z}\right)^{2}\right)$.

$$
\begin{gathered}
q(x)=\sqrt{1+4 c} \sum_{n=0}^{\infty} \frac{f_{-}^{n}}{f_{+}^{n+1}}\left[\left(1+(-1)^{n}\right) \tilde{q}\left(\frac{f_{+}^{n+1} x}{2 f_{-}^{n}}\right)+\left(1-(-1)^{n}\right) \tilde{q}\left(\frac{-f_{+}^{n+1} x}{2 f_{-}^{n}}\right)\right] \\
f_{ \pm}=\sqrt{1+4 c} \pm 1 \quad c=M^{2} / 4 P_{z}^{2}
\end{gathered}
$$

$\mathcal{O}\left(\Lambda_{Q C D}^{2} /\left(P^{z}\right)^{2}\right)$ Corrections

- Twist-4:

$$
\begin{aligned}
& q_{t r}\left(x, \mu^{2}, P^{z}\right)=\frac{\lambda^{2}}{8 \pi} \int_{-\infty}^{\infty} d z \int_{0}^{1} \frac{d t}{t} e^{i \frac{z k^{z}}{t}}\langle P| \widetilde{\mathcal{O}}_{t r}(z)|P\rangle \\
& \widetilde{\mathcal{O}}_{t r}(z)= \int_{0}^{z} d z_{1} \bar{\psi}(0)\left[\gamma^{\nu} \Gamma\left(0, z_{1}\right) D_{\nu} \Gamma\left(z_{1}, z\right)\right. \\
&\left.+\int_{0}^{z_{1}} d z_{2} \lambda \cdot \gamma \Gamma\left(0, z_{2}\right) D^{\nu} \Gamma\left(z_{2}, z_{1}\right) D_{\nu} \Gamma\left(z_{1}, z\right)\right] \psi(z \lambda)
\end{aligned}
$$

Parameterized

Quasi-PDF (green) w/ loop (red) w/ loop + mass (blue)

$$
P^{z}=\frac{2 \pi}{L} n=n \times 0.43 \mathrm{GeV} \quad \mathrm{n}=2 \text { (upper) \& } 3
$$

Unpolarized Isovector Proton PDF

x

Quark mass effect!

A follow-up work (Alexandrou et. al.1504.07455)

A follow-up work (Alexandrou et. al.1504.07455)

Helicity and Transversity (isovector)

Quasi-PDF (Helicity and Transversity)

$$
P^{z}=\frac{2 \pi}{L} n=n \times 0.43 G e V \quad \mathrm{n}=1,2,3 .
$$

Quasi-PDF (green) w/ loop (red) w/ loop + mass (blue)

$$
\begin{aligned}
& P^{z}=\frac{2 \pi}{L} n=n \times 0.43 G e V \\
& \mathrm{n}=2 \text { (upper) \& } 3
\end{aligned}
$$

Isovector Proton Helicity and Transversity

Isovector Proton Helicity

Isovector Proton Transversity

Pion Light Cone Wave Function (preliminary)

$$
\begin{aligned}
\phi_{\pi}(x, \mu)+3 \phi_{\eta}(x, \mu) & =2\left[\phi_{K^{+}}(x, \mu)+\phi_{K^{-}}(x, \mu)\right] \\
& =2\left[\phi_{K^{0}}(x, \mu)+\phi_{\bar{K}^{0}}(x, \mu)\right]
\end{aligned}
$$

JWC, Iain W. Stewart, Phys.Rev.Lett. 92 (2004) 202001

Outlook

- Wee partons, a good test to this approach--smaller quark mass
- Next: linear divergence in the matching kernel, lattice perturbation theory, proof of factorization
- If it works, lots of things to do: LCW, PDF, GPD, TMD ...

Backup slides

Linear Divergence in Matching

