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of which is strongly restricted by rotational invariance).
Several GPDs and TMDs describe specific spin-orbit cor-
relations at the parton level and are sensitive to parton or-
bital angular momentum, which is a crucial ingredient in
describing how the overall spin of the nucleon arises from
its constituents. In section 5 we make some comments on
this topic, which is reviewed in detail in a dedicated con-
tribution to this volume [1].

For definiteness, we will mostly consider distributions
for quarks and antiquarks in the following. Gluon distribu-
tions can be discussed in close analogy, with appropriate
adaptions.

2 Space-time and momentum structure

In this section we review the variables on which differ-
ent kinds of parton distributions depend. This will allow
us to see how the different distributions are related to
each other. Any process that probes partons inside a nu-
cleon singles out a particular direction, providing a phys-
ical distinction between “longitudinal” and “transverse”.
This is naturally implemented in the parton model, where
one chooses a reference frame in which the hadron un-
der consideration moves fast. One is however not limited
to this choice: parton distributions are defined in a co-
variant way, and one can also discuss them in the hadron
rest frame. Of course, the process probing the parton still
singles out a particular direction in that frame, so that
transverse and longitudinal directions play different roles.
Thus, the information one can gain about partons in the
proton inevitably breaks manifest three-dimensional rota-
tion invariance. For definiteness, we will in the following
consider a reference frame in which the hadron moves fast
in the positive z direction (exactly or approximately). A
suitable set of coordinates is then given by the light-cone
coordinates v± = (v0 ± v3)/

√
2 and the transverse com-

ponents v = (v1, v2) of a given four-vector v.
A two-parton correlation function for quarks is defined

as the matrix element of a bilinear quark field operator
between proton states:

H(k, P,∆) = (2π)−4

∫
d4z eizk

×
〈
p(P + 1

2∆)|q̄(− 1
2z)Γ q(12z)|p(P − 1

2∆)
〉
. (1)

The Dirac matrix Γ selects the twist1 and the parton spin
degrees of freedom, and we have omitted labels for the
proton spin state. For the moment we put aside field the-
oretical issues such as the regularisation and renormalisa-
tion of the operator and the insertion of a Wilson line be-
tween the two quark quark fields. The parton and proton
momenta are shown in figure 1. Notice that the on-shell
condition for the proton states results in the conditions
P∆ = 0 and 4P 2 + ∆2 = 4m2, where here and in the
following m denotes the proton mass.

1 There are several – slightly different – definitions of the
term “twist”. We will not expand on this topic here and refer
to [2] for a detailed discussion.

While H(k, P,∆) is a smooth function of ∆, the cases
where this momentum transfer is zero or not correspond
to distinct physical situations:

1. In the forward limit ∆ = 0 the function appears in
the cross section of inclusive processes. Glossing over
complications from confinement, one may insert a com-
plete set |X⟩⟨X | of states between the fields q̄ and q
in the matrix element (1). This gives essentially the
amplitude A for emitting a quark or antiquark from
the proton, with a system of spectator partons X left
behind, multiplied by the conjugate A∗ of that ampli-
tude as required for the computation of a cross sec-
tion. The representation as a squared amplitude A∗A
opens the possibility to interpret certain forward dis-
tributions as probability densities in the sense of quan-
tum mechanics. Taken literally, this interpretation no
longer holds after the regularisation and renormalisa-
tion already mentioned, but if taken with due caution
it remains a valuable guide for physical intuition.
We note that in the forward limit, it is convenient to
take a frame where P = 0, so that the proton moves
exactly along the z axis.

2. In non-forward kinematics ∆ ̸= 0 the function appears
in the amplitude of exclusive reactions, with an incom-
ing proton of momentum P−∆/2 and an outgoing one
of momentum P +∆/2. The functions in this case are
often called “generalised”.

In physical observables, the correlation function (1) typ-
ically is integrated over one or more components of the
four-momentum k. Let us review this step by step.

1. After an integral over k−, the quark and antiquark
fields are evaluated at z+ = 0. This admits a very
elegant interpretation in the framework of light-cone
quantisation: quark fields are quantised at light-cone
time z+ = 0, where they obey the anticommutation
relations for free fields and have a Fourier decomposi-
tion in terms of creation and annihilation operators for
quarks and antiquarks. This may be seen as the field
theory implementation of the parton model, where par-
tons are regarded as quasi-free just before they are
probed in a physical process. The parton states cre-
ated or annihilated by the fields have positive plus-
momentum, so that depending on the respective signs
of k+ −∆+/2 and k+ +∆+/2, the matrix element in
figure 1 describes the emission and reabsorption of a
quark, the emission and reabsorption of an antiquark,
or (for ∆+ ̸= 0 only) the emission or absorption of a
quark-antiquark pair (see figure 3 below). At z+ = 0,
the representation of the parton correlation function as

k − 1
2∆ k + 1

2∆

P − 1
2∆ P + 1

2∆

Fig. 1. Momentum assignments in the general quark correla-
tion function (1).
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q
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Fig. 6. A lowest-order graph for Drell-Yan production at in-
termediate transverse momentum of the lepton pair. The blobs
represent collinear PDFs, and the box around the lower blob
and gluon denotes the TMD (14) in the region of large k1. The
decay of the virtual photon into a lepton pair is not shown for
simplicity.

in ζ and µ discussed above. With reference to the original
work [43], this is often called CSS resummation.

The result (14) clearly shows that the integral
∫
d2k

of a TMD requires a suitable regularisation in the ultra-
violet region. For heuristic purposes, one may think of a
simple cutoff in k2. Setting this cutoff to µ2 and taking
the derivative with respect to µ2, one readily sees that
the kernel Cij in (14) is closely related to the spitting ker-
nel in the DGLAP evolution equations for collinear PDFs.
For systematic calculations, however, one typically defines
the collinear PDFs using dimensional regularisation, sub-
tracting the ultraviolet divergence in 4 − 2ϵ dimensions
and then setting ϵ = 0. The simple integral relation be-
tween TMDs and PDFs defined in 4 dimensions is then of
course lost. In a modified form, it is however recovered in
the Fourier conjugate representation

fi(x, z; ζ, µ) =

∫
d2k eikz fi(x,k; ζ, µ) , (15)

where the analogue of (14) reads

fi(x, z; ζ, µ) = fi(x;µ) (16)

+
∑

j

∫ 1

x

dx̂

x̂
C̃ij

(
x̂, log(ζz2), log(µ2z2)

)
fj(x/x̂;µ)

at small z. The exponential in the Fourier transform in-
deed acts as an ultraviolet regulator for the integral, since
at high k its oscillations are sufficient to give a finite result.
The integral of the TMD regulated in this way gives the
corresponding PDF plus corrections that can be computed
in an αs expansion. The divergence of the unregulated in-
tegral is reflected in the logarithms of z2 on the r.h.s.
of (16). It is amusing to note that for suitable functions
f(x,k), the exponential regulator in (15) is equivalent to
a momentum cutoff [44].

Let us now take a step back to the derivation of the
TMD factorisation formula (10). This formula, and graphs
like the one in figure 6, suggest that the two protons only
interact via the annihilation of a quark-antiquark pair into
a virtual photon. This is barely plausible and indeed not
the case. In the language of perturbation theory, the two

protons can exchange an arbitrary number of soft gluons,
and in addition, any number of gluons with longitudinal
polarisation from each can take part in the qq̄ annihilation
subprocess, as shown in figure 7. To establish factorisation,
one needs to show that these gluon interactions can be cast
into a form consistent with the simple structure in (10).
The result of such arguments, presented in detail in [41]
(and sketched briefly in [47]), is that the physical effects
of these gluons are represented by Wilson line operators
between the fields in the parton correlation function (1)
(integrated over k−) and by so called soft factors, which
are vacuum expectation values of further Wilson lines and
can be absorbed in the definition of the TMDs. The Wil-
son lines also turn the operator product in (1) into a gauge
invariant operator, as is appropriate for the definition of
a meaningful quantity.

SH H

Fig. 7. Organisation of a graph for the Drell-Yan process
into subgraphs that contain either hard momenta (H) or soft
momenta (S) of momenta collinear to one of the protons (top
and bottom blobs).

All this may seem to be technicalities, but indeed there
is important physics behind it. The precise form of the
Wilson lines allows one to regulate the rapidity diver-
gences of TMDs, introducing a parameter ζ. The associ-
ated rapidity evolution equation allows one to resum large
logarithms in physical cross sections, without which one
would badly fail to describe experimentally measured dis-
tributions.

A far reaching result is that the path of the Wilson
lines depends on the space-time structure of the process in
which the TMDs are embedded. The Wilson lines required
for Drell-Yan production point to the past, whereas those
appearing in the parton distributions for SIDIS point to
the future. This reflects the fact that the gluon interac-
tions shown in figure 8 strike a parton before the hard
scattering in the Drell-Yan case and after the hard scat-
tering in SIDIS.

This difference has remarkable consequences when spin
dependence is taken into account. Consider the distribu-
tion of unpolarised quarks in a proton that is polarised
in the transverse direction s. For a proton moving in the
positive or negative z direction, this can be parametrised

actually, things are not so simple… (example of D-Y process)
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H(k, P,∆)

H(x,k, ξ,∆)

H(x, ξ,∆2)

∑n
k=0Ank(∆2) (2ξ)k

H(x,k, ξ, b)

H(x, ξ, b)

W (x,k, b)

f(x, b)f(x,k)

f(x) Fn(b) Fn(∆2)

f(k, P )

f(x, z)

∫
d2b

∫
d2b

∫
d2k

∫
d2k

∫
dk−

∫
dk−

∫
d2k

∫
dx xn−1

∆ = 0

ξ = 0

ξ = 0

ξ = 0

FT

FT

FT

GTMD

GPD

TMD

form factor

GFFs

PDF

parton correlation function

parton correlation function

distribution

impact parameter

∫
dx xn−1

Wigner distribution

Fig. 2. Selected quantities that can be derived from the fully differential two-quark correlation function H(k, P,∆) defined
in (1). Double arrows marked by “FT” denote a Fourier transform between ∆ and b or between k and z. Fractions of plus-
momentum (commonly called “longitudinal momentum fractions”) are written as x = k+/P+ and 2ξ = −∆+/P+. The invariant
momentum transfer can be expressed in terms of longitudinal and transverse variables as ∆2 = −(4ξ2m2 +∆

2)/(1− ξ2). Only
kinematic arguments of the functions are given, while the scales introduced by ultraviolet renormalisation (µ) of by the regulation
of rapidity divergences (ζ) are suppressed. As discussed in the text, the integrals

∫
dk− and

∫
d2k cannot be taken literally but

must be supplemented with a regularisation procedure.

where “average” and “difference” refer to the right and
left hand sides of figure 1, or equivalently to the light-cone
wave function ψ and its conjugate ψ∗.

After these general considerations, we can take a closer
look at the different distributions that can be obtained
from the general two-quark correlation function in (1). A
selection of them is shown in figure 2. Let us start at the
top of the hierarchy.

1. In the forward limit ∆ = 0, parton correlation func-
tions that are not integrated over any component of k
(called “doubly” or “fully unintegrated” distributions)
have been discussed in the context of evolution at small
x [6] and with the aim of having an exact descrip-
tion of final-state kinematics [7,8]. Under the name of
“beam functions”, they have also been introduced in
soft-collinear effective theory (SCET) for the resum-
mation of large logarithms in observables sensitive to
the proton remnants (called “beam jets”) [9,10,11].
In that case, distributions differential in k− but inte-
grated over k are referred to as beam functions as well.
The considerations in [6] and [9,10,11] focus on the re-
gion of large parton virtuality k2 and compute the un-
integrated distributions in terms of conventional par-
ton distribution functions (PDFs), an aspect we will
discuss in more detail for TMDs in section 4.
A detailed analysis of factorisation with unintegrated
distributions has been given for semi-inclusive deep in-
elastic scattering (SIDIS) in [8]. For hadron-hadron

collisions there are strong arguments that this type
of factorisation generically fails, due to soft gluon ex-
change between the spectator partons in each hadron
[12,13]. In kinematics referred to as the Glauber re-
gion, these soft interactions “tie together” the two had-
rons in a way that prevents one from describing the
non-perturbative dynamics by matrix elements that
pertain to only one hadron and not to both. To estab-
lish factorisation, one has to show that (after appro-
priate approximations) gluon exchange in the Glauber
region cancels in the observable at hand.
Not being integrated over any momentum component,
parton correlation functions retain manifest Lorentz
invariance (provided that one is careful not to forget
auxiliary vectors required for their field theoretical def-
inition). They can therefore be used to classify and
relate different distributions that descend from them.
Examples are given in [14] for ∆ = 0 and in [15] for
∆ ̸= 0.

2. Wigner distributions depend on the average momen-
tum and the average position of the quark. From the
uncertainty principle it is clear that they cannot rep-
resent joint probabilities in these two variables, but
integrating over any one of them, one obtains a prob-
ability in the other.
The most straightforward interpretation of these dis-
tributions is in the forward limit ξ = 0 of longitu-
dinal momentum. Integrating the Wigner distribution
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M. Burkardt1 and B. Pasquini2,3

1 Department of Physics, New Mexico State, University, Las Cruces, New Mexico 88003, USA
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Abstract. We review the status of our understanding of nucleon structure based on the modelling of dif-
ferent kinds of parton distributions. We use the concept of generalized transverse momentum dependent
parton distributions and Wigner distributions, which combine the features of transverse-momentum de-
pendent parton distributions and generalized parton distributions. We revisit various quark models which
account for different aspects of these parton distributions. We then identify applications of these distribu-
tions to gain a simple interpretation of key properties of the quark and gluon dynamics in the nucleon.

PACS. 12.38.Aw General properties of QCD (dynamics, confinement, etc.) – 13.60.Hb Total and inclusive
cross sections (including deep-inelastic processes)

1 Introduction

The nucleon as a strongly interacting many-body system
of quarks and gluons offers such a rich phenomenology
that models are crucial tools to unravel the many facets of
its nonperturbative structure. Although models oversim-
plify the complexity of QCD dynamics and are constructed
to mimic certain selected aspects of the underlying theory,
they are almost unavoidable when studying the partonic
structure of the nucleon and often turned out to be crucial
to open the way to many theoretical advances.

Recently, a new type of distribution functions, known
as generalized transverse momentum dependent parton
distributions (GTMDs), has emerged as key quantities
to study the parton structure of the nucleon [1–3]. They
parametrize the unintegrated off-diagonal quark-quark cor-
relator, depending on the three-momentum k of the quark
and on the four-momentum ∆ which is transferred by
the probe to the hadron. They have a direct connection
with the Wigner distributions of the parton-hadron sys-
tem, which represent the quantum-mechanical analogues
of classical phase-space distributions. Wigner distributions
provide five-dimensional (two position and three momen-
tum coordinates) images of the nucleon as seen in the
infinite-momentum frame [4–6]. As such they contain the
full correlations between the quark transverse position and
three-momentum.

In specific limits or after specific integrations of GT-
MDs, one can build up a natural interpretation of mea-
sured observables known as generalized parton distribu-
tions (GPDs) and transverse momentum-dependent par-
ton distributions (TMDs). Further limits/integrations re-
duce them to collinear parton distribution functions (PDFs)

FF(∆)

GTMD(x, k⃗⊥, ∆)

GPD(x, ∆)TMD(x, k⃗⊥)

PDF(x)TMSD(k⃗⊥)

TMFF

Charge

∆ = 0
∫
dx

∫
d2k⊥

(k⃗⊥, ∆)

Fig. 1. Representation of the projections of the GTMDs into
parton distributions and form factors.

and form factors (FFs) (see Fig 1 for a pictorial represen-
tation of the different links to GTMDs [7]).

The aim of this work is to review the most recent de-
velopments in modelling the GTMDs, Wigner distribu-
tions, GPDs and TMDs, discussing the complementary
and novel aspects encoded in these distributions. In sect. 2
we will focus on the GTMDs. As unifying formalism for
modelling such functions, we will adopt the language of
light-front wave functions (LFWFs), providing a represen-
tation of nucleon GTMDs which can be easily adopted in

 Burkardt, Pasquini, arXiv:1510.02567 
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TMD formalism - The nucleon correlator, in 
collinear configuration: 3 distribution functions 

4 M. ANSELMINO

P, S

q q

k

k′

P, S

Fig. 1. – The handbag diagram for DIS. At leading QED order, the interaction between the
lepton (not shown) and the nucleon is mediated by the exchange of a virtual photon. Thus, the
DIS cross section is just the total cross section for the ��N � X process, which, by the optical
theorem, is related to the forward scattering amplitude. In the parton model, at leading QCD
order, the virtual photon scatters o� a single quark in the nucleon, as represented in the figure.
The lower blob is thus the matrix element between the nucleon initial and final states of two
quark fields, one ”extracted from” and the other ”replaced into” the nucleon. It is a matrix in
the Dirac spinor space.

and it shows the chiral-odd nature of transversity, as it relates quarks with opposite
helicities. It is then clear why h1 cannot be measured in DIS: the bottom blob of fig. 2
cannot be inserted in the handbag diagram of fig. 1, as the QED (and QCD) interactions
conserve helicity and there is no way, by photon or gluon couplings, of flipping the helicity
of massles quarks.

A measurement of transversity requires a process in which h1 couples to another
chiral-odd function. Several suggestions have been discussed in the literature. At the
moment the most practicable way appears via SIDIS processes [7], in which h1 couples
to a chiral-odd fragmentation function, the Collins fragmentation function, as depicted
in fig. 3. In principle, the cleanest and most direct way should be via the measurement
of the double transverse spin asymmetry ATT in Drell-Yan processes, which couples two
transversity distributions (see fig. 4), as discussed in Section 5.

So far we have only considered collinear partonic configurations, in which the rele-
vant degrees of freedom, describing the nucleon structure, are the parton longitudinal
momentum fraction x and the helicities. Yet, it is already clear that the spin transverse
degree of freedom is at least as interesting, but much less known. It will be much more
so when also the intrinsic transverse motions of partons, k⇥, in addition to x, will be
considered. Which requires a detour into the issue of SSA.

3. – The (problem of) transverse Single Spin Asymmetries

Let us consider a 2 into 2 physical process, like AB ⇥ C D, in the center of mass
reference frame, A(p) + B(�p) ⇥ C(p�) + D(�p�), like in fig. 5. We wonder whether
or not the cross section for such a process can depend on the spin polarization S of one
particle only, say A; particle B is not polarized and the polarization of the final particles

�ij(k;P, S) =
�

X

⇥
d3P X

(2⇤)3 2EX
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TMD-PDFs: the leading-twist correlator, with intrinsic k┴, 
contains 8 independent functions 
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 with partonic interpretation 



X
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 TMDs = Transverse Momentum Dependent 
Parton Distribution Functions (TMD-PDF) or  

Transverse Momentum Dependent 
Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with 
their intrinsic motion and spin, inside a fast moving 

proton, with its spin.

S · (p⇥ k�) sq · (p⇥ k�) S · sq · · ·
“Sivers effect” “Boer-Mulders effect”

TMDs in simple parton model 



there are 8 independent TMD-PDFs

gq
1L(x,k2

�)

fq
1 (x,k2

�)

hq
1T (x,k2

�)

correlate sL of quark with SL of proton 
unintegrated helicity distribution 

correlate sT of quark with ST of proton 
unintegrated transversity  distribution 

unpolarized quarks in unpolarized protons 
unintegrated unpolarized distribution 

only these survive in the collinear limit 

f�q
1T (x,k2

�) correlate k⊥ of quark with ST of proton (Sivers)

h�q
1 (x,k2

�) correlate k⊥ and sT of quark (Boer-Mulders) 

h�q
1L (x,k2

�)g�q
1T (x,k2

�) h�q
1T (x,k2

�)
different double-spin correlations  



sq

X

q
p?

h

TMD-FFs give the number density of hadrons, with 
their momentum, originated in the fragmentation of a 

fast moving parton, with its spin.

“Collins effect”sq · (pq ⇥ p�)

there are 2 independent TMD-FFs for spinless hadrons

Dq
1(z,p2

?) unpolarized hadrons in unpolarized quarks 
unintegrated fragmentation function 

H?q
1 (z,p2

?) correlate p⊥ of hadron with sT of quark (Collins)



how to “measure” TMDs? 

needs processes which relate physical observables 
to parton intrinsic motion (and correlators)

SIDIS Drell-Yan processes 
`N ! `hX pN ! `+`�X

a similar diagram for e+e� ! h1 h2 X

and, possibly, for pN ! hX



TMDs in SIDIS 

�q �0
q

p, Sp, S

Q2Q2

h h
d6� � d6�⌅p��⌅hX

dxB dQ2 dzh d2P T d⇥S

TMD factorization holds at large Q2, and PT ≈ k⊥ ≈ ΛQCD

PT � Q2Two scales:

d�⇥p�⇥hX =
�

q

fq(x,k⇥;Q2)� d�̂⇥q�⇥q(y, k⇥;Q2)�Dh
q (z,p⇥;Q2)

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

TMD-PDFs hard scattering TMD-FFs

P T = p? + zk?
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Figure 1: Illustration of kinematics, especially the azimuthal angles, for SIDIS in the target
rest frame [6]. P hT and ST are the transverse parts of P h and S with respect to the photon
momentum q = l − l′.

notation of [6], one has

dσ

dx dy dφS dz dφh dP 2
hT

∝
{

FUU,T + ε cos(2φh)F cos 2φh

UU

+ S∥ ε sin(2φh)F sin 2φh

UL + S∥ λe

√

1 − ε2 FLL

+ |S⊥|
[

sin(φh − φS)F sin(φh−φS)
UT,T + ε sin(φh + φS)F sin(φh+φS)
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+ ε sin(3φh − φS)F sin(3φh−φS)
UT

]

+ |S⊥|λe

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT + . . .

}

. (8)

In Eq. (8), ε is the degree of longitudinal polarization of the virtual photon which can
be expressed through y [15, 6], S∥ denotes longitudinal target polarization, and λe is the
lepton helicity. The structure functions FX,Y (X,Y refer to the lepton and the nucleon,
respectively: U = unpolarized; L, T = longitudinally, transversely polarized) merely depend
on x, z, and PhT . By choosing specific polarization states and weighing with the appropriate
azimuthal dependence, one can extract each structure function in (8) as past experiments
have already unambiguously shown.

For TMD studies one is interested in the kinematical region defined by

PhT ≃ ΛQCD ≪ Q , (9)

for which the structure functions can be written as certain convolutions of TMDs. In this
region, the components in Eq. (8) appear at leading order when expanding the cross section
in powers of 1/Q, while additional ones show up at subleading order [1, 15, 6, 16]. Measuring
the structure functions in Eq. (8) allows one to obtain information on all eight leading quark
TMDs. To be specific, one has (for a spinless final state hadron) [6, 16],

FUU ∼
∑

q

e2
q f q

1 ⊗ Dq
1 F cos(φ−φS)
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e2
q gq
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TMDs in Drell-Yan processes              
COMPASS, RHIC, Fermilab, NICA, AFTER...              

p p

Q2 = M2

qT

qL

l+

l–

factorization holds, two scales, M2, and qT << M

d�D�Y =
�

a

fq(x1,k⇤1;Q2)� fq̄(x2,k⇤2;Q2) d�̂qq̄⇥⇤+⇤�

direct product of TMDs,  no fragmentation process
talks by Parsamyan, Ramson, Peng, Quaresma, ….  



Case of one polarized nucleon only
d�

d

4

q d⌦

=

↵

2

� q

2

⇢
(1 + cos

2

✓) F

1

U + (1� cos

2

✓) F

2

U + sin 2✓ cos � F

cos �
U + sin

2

✓ cos 2� F

cos 2�
U

+ SL

⇣
sin 2✓ sin � F

sin �
L + sin

2

✓ sin 2� F

sin 2�
L

⌘

+ ST

h⇣
F

sin �S

T + cos

2

✓

˜

F

sin �S

T

⌘
sin �S + sin 2✓

⇣
sin(� + �S) F

sin(�+�S)

T

+ sin(�� �S) F

sin(���S)

T

⌘

+ sin

2

✓

⇣
sin(2� + �S) F

sin(2�+�S)

T + sin(2�� �S) F

sin(2���S)

T

⌘i�

!"#$%&'()&'*&+%,-

./012(!3'*%(452((4676 !'&8(9:;<*"*&" =

>&'#,;(',-;(?'&8,(@>AB

.:%%*"-CD:3,'(?'&8,(@.DB

Collins-Soper 
frame 

Sivers

B-M ⊗ B-M



Unpolarized cross section already very interesting
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Collins function from e+e– processes  
Belle, BaBar, BES-III
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another similar asymmetry can be measured, A0 
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FIG. 1: The multiplicities M⇡+

p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared
with HERMES measurements for ⇡+ SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.
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FIG. 2: The multiplicities M⇡�
p obtained from Eqs. (12) and (8), with the parameters of Eq. (15), are compared

with HERMES measurements for ⇡� SIDIS production o↵ a proton target [15]. The shaded uncertainty bands
correspond to a 5% variation of the total �2.

Experimental results:  
PT dependence of unpolarised SIDIS multiplicities

P T = p? + zk?
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Experimental results:  
clear evidence for Sivers and Collins effects from 

SIDIS data (HERMES, COMPASS, JLab)



independent evidence for Collins effect 
from e+e- data at Belle, BaBar and BES-III

6 I. GARZIA
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Figure 3. – Preliminary BABAR measurement of Collins asymmetries (full circle in red). By
comparison the superseded Belle off-peak results (open circle in blue), and Belle results on the
full data sample (full green circles) are shown. Systematic and statistical errors are added in
quadrature.
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Figure 4. – Collins asymmetry A12 (a), and A0 (b), as a function of (sin2 θ)/(1 + cos2 θ), where
θ = θT and θ = θ2 have been used in plot (a) and (b), respectively.

The asymmetries are studied in function of symmetric bins (z1, z2) of the pion fractional
energies and in function of sin2 θ/(1 + cos2 θ), and are compared with the Belle analysis.
The results are in overall good agreement each other. However, the off-peak data sample
is statistically limited, and the update of the measurement with the full BABAR data
sample is ongoing.
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RF0: comparison of  ## asymmetry from previous results
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FIG. 2. Double ratio RU/RL versus 2φ0 in the bin z1 ∈
[0.3, 0.5], z2 ∈[0.5, 0.9] (top) and bin z1 ∈ [0.5, 0.9], z2 ∈
[0.5, 0.9] (bottom). The solid lines show the results of the fit.

tio RU/RL(C) follows the expression

RU

RL(C)
= A cos(2φ0) +B, (3)

where A and B are free parameters. B should be consis-
tent with unity, and A mainly contains the Collins effect.
The AUL, AUC are used to denote the asymmetries for
UL and UC ratios, respectively.
The analysis is performed in (z1, z2) bins with bound-

aries at zi= 0.2, 0.3, 0.5 and 0.9 (i = 1, 2), where comple-
mentary off-diagonal bins (z1, z2) and (z2, z1) are com-
bined. In each (z1, z2) bin, normalized rates RU,L,C and
double ratios RU/RL,C are evaluated in 15 bins of con-
stant width in the 2φ0 angles. In Fig. 2, the distributions
of the double ratio RU/RL are shown for two highest (z1,
z2) bins with the fit results using Eq. 3. In Fig. 3, the
asymmetry values (A) obtained from the fit are shown as
a function of six symmetric (z1, z2) bins. Studying the
dependence on pt is valuable for investigating the trans-
verse momentum dependent evolution of the Collins func-
tion. The expected behavior of the Collins asymmetries
as a function of sin2θ2/(1 + cos2θ2) is linear (see Eq. 2).
Therefore, the Collins asymmetries are investigated also
in bins of pt and sin2θ2/(1 + cos2θ2), as shown in Fig. 4
and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties

are investigated. An important test of the analysis
method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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and Fig. 5. The numerical results in each (z1,z2) and pt
bins are listed in Table I. Since one pion is allowed to be
assigned to different pion pairs, the statistical uncertain-
ties are expected to be underestimated. This is checked
by repeating the whole procedure but allowing each pi-
on to be only involved in one pion pair. We find that
the statistical uncertainty in each bin becomes slightly
larger, and we therefore scale the statistical errors by a
factor of 1.1 for all bins.
Several potential sources of systematic uncertainties
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method is the extraction of double ratios from MC sam-
ples, in which the Collins asymmetries are not included
but radiative gluon and detector acceptance effects are
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a similar asymmetry just measured by BES-III 
(arXiv 1507:06824)

Collins effect clearly observed both in SIDIS 
and e+e- processes, by several Collaborations

Q2 = 13 GeV2
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
p

s = 62.4 GeV/c2, PHENIX 3.2 < ⌘ < 3.7
p

s = 200 GeV/c2, STAR h⌘i = 3.3
p

s = 200 GeV/c2, STAR h⌘i = 3.7
p

s = 500 GeV/c2, STAR 2.7 < ⌘ < 4.0

other experimental evidence of 
the Sivers and Collins effects

large PT

p" p! ⇡ X

Single   
Spin 

Asymmetry

AN =
d�" � d�#

d�" + d�#



TMD extraction from data - first phase

unpolarised TMDs - fit of SIDIS multiplicities     
Sivers function - fit of SIDIS asymmetries 

Collins function - fit of e+e- → h1 h2 azimuthal correlations 
Collins function & Transversity distribution - combined fits 

of SIDIS asymmetries & e+e- → h1 h2 data 

simple parameterisation, factorised k⊥ and p⊥ Gaussian 
dependences, no TMD evolution, limited number of 

parameters, …..

talks by Schlegel, Puckett, Sbrizzai, Delcarro, Prokudin, 
Bradamante, Yoshida, Martin, Silva, Bedfer, Sirtl, Radici, 

Schnell, Xiao, van Daal, Avakian, Seidl, Anulli…

more and more precise data needed, larger 
kinematical ranges, multi dimensional binning, … 
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FIG. 6: In the left panel we plot (solid red lines) the transversity distribution functions xh

1q(x) = x�T q(x) for q = u, d,

with their uncertainty bands (shaded areas), obtained from our best fit of SIDIS data on A
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, adopting the standard parameterisation (Table II). Similarly, in the right panel we plot the corresponding first
moment of the favoured and disfavoured Collins functions, Eq. (33). All results are given at Q

2 = 2.41 GeV2. The

dashed blue lines show the same quantities as obtained in Ref. [7] using the data then available on A

sin(�h+�S)

UT and A

UL
12

.

transversely polarised quark. In addition, the SIDIS asymmetry can only be observed if coupled to a non negligi-
ble quark transversity distribution. The first original extraction of the transversity distribution and the Collins
fragmentation functions [6, 7], has been confirmed here, with new data and a possible new functional shape of
the Collins functions. The results on the transversity distribution have also been confirmed independently in
Ref. [8].

A further improvement in the QCD analysis of the experimental data, towards a more complete understanding
of the Collins and transversity distributions, and their possible role in other processes, would require taking into
account the TMD-evolution of �T q(x, k?) and �NDh/q"(z, p?). Great progress has been recently achieved in the
study of the TMD-evolution of the unpolarized and Sivers transverse momentum dependent distributions [33–37]
and a similar progress is expected soon for the Collins function and the transversity TMD distribution [38].
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Although the HERMES and COMPASS data cover similar Q2 regions (1  Q2  10 GeV2), they
di↵er in the experimental set-up, in the statistics, in the binning choices and in the explored xB range; in
addition, there seems to be some discrepancy between the two measurements. We then fit the HERMES
and the COMPASS multiplicities separately. A simultaneous fit of both sets of data would lead to poor
results and is not presented here.

Recently, another study of the unpolarised TMDs has appeared [28], which follows a procedure somehow
similar to that of this work, but which considers only the HERMES set of experimental data and does
not include any attempt to check for signs of scale evolution.

After a short Section II devoted to the formalism, we present our main results in Section III. In Section
IV we briefly discuss the possible role, and look for possible signs, of TMD evolution. In Section V we
compare our present results with those of previous analyses [9, 11] and check their consistency with other
measurements of SIDIS cross sections and PT -distributions [10, 12, 13, 29] which were not included in
our fits. Further comments and concluding discussions are presented in Section VI.

II. FORMALISM

The unpolarised ` + p ! `0 hX, SIDIS cross section in the TMD factorisation scheme, at order (k?/Q)
and ↵0

s, in the kinematical region where PT ' k? ⌧ Q , reads [30, 31]:

d�`+p!`0hX

dxB dQ2 dzh dP 2

T

=
2⇡2↵2

(xBs)
2

⇥
1 + (1� y)2

⇤

y2

⇥
X

q

e2q

Z
d2k? d2p? �(2)

⇣
P T � zhk? � p?

⌘
fq/p(x, k?)Dh/q(z, p?) (1)

⌘ 2⇡2↵2

(xBs)
2

⇥
1 + (1� y)2

⇤

y2
FUU ·

In the �⇤ � p c.m. frame the measured transverse momentum, P T , of the final hadron is generated by
the transverse momentum of the quark in the target proton, k?, and of the final hadron with respect to
the fragmenting quark, p?. At order k?/Q it is simply given by

P T = z k? + p? . (2)

As usual:

s = (`+ p)2 Q2 = �q2 = �(`� `0)2 xB =
Q2

2p · q y =
Q2

xBs
zh =

p · Ph

p · q (3)

and the variables x, z and p? are related to the final observed variables xB , zh and P T and to the
integration variable k?. The exact relations can be found in Ref. [9]; at O(k?/Q) one simply has

x = xB z = zh . (4)

The unpolarised TMD distribution and fragmentation functions, fq/p(x, k?) and Dh/q(z, p?), depend
on the light-cone momentum fractions x and z and on the magnitudes of the transverse momenta k? =
|k?| and p? = |p?|. We assume these dependences to be factorized and we assume for the k? and p?
dependences a Gaussian form, with one free parameter which fixes the Gaussian width,

fq/p(x, k?) = fq/p(x)
e�k2

?/hk2
?i

⇡hk2?i
(5)

Dh/q(z, p?) = Dh/q(z)
e�p2

?/hp2
?i

⇡hp2?i
· (6)

The integrated PDFs, fq/p(x) and Dh/q(z), can be taken from the available fits of the world data: in
this analysis we will use the CTEQ6L set for the PDFs [32] and the DSS set for the fragmentation
functions [33]. In general, the widths of the Gaussians could depend on x or z and might be di↵erent

hk2?i = 0.57 hp2?i = 0.12 GeV
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FIGURE 1. Fit of HERMES data [6] for pion (left panel) and kaon production (right panel).
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FIGURE 2. Fit of COMPASS deuteron data [3] for pion (left panel) and kaon production (right panel).
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Sivers effects induces distortions in the parton distribution 
fq/p,S(x,k?) = fq/p(x, k?) +

1
2
�N

fq/p"(x, k?) S · (p̂⇥ k̂?)

= fq/p(x, k?)� k?
M

f

?q
1T (x, k?) S · (p̂⇥ k̂?)

courtesy of  
A. Bacchetta 

u quark
S = Sŷ

p = pẑ



TMDs and QCD - TMD evolution  
study of the QCD evolution of TMDs and TMD factorisation 

in rapid development 

Different TMD evolution schemes and different 
implementations within the same scheme.          

It needs non perturbative inputs 

dedicated workshops, QCD Evolution             
2011, 2012, 2013, 2014, 2015, 2016

TMDlib and TMDplotter: library and plotting tools for 
transverse-momentum-dependent parton distributions

dedicated tools:

talks by Collins, Kang, Echevarria,…



Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

 TMD phenomenology - phase 2
how does gluon emission affect the transverse motion?

a few selected results
11
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FIG. 1: (Color online.) The (negative of the) up quark Sivers function at x = 0.1 evolved from Q =
√
2.4 GeV(solid maroon)

to Q = 5 GeV(dashed blue) and Q = 91.19 GeV(dot-dashed red). The upper plot is found by evolving the Gaussian fits of
the Bochum group [14] and the lower plot is found by evolving the Gaussian fits of the Torino group [15]. In the case of the
Bochum fits, the down quark Sivers function is just the negative of the up quark one. For the Torino fits, the down quark
Sivers function is obtained by multiplying the up quark Sivers function by −1.35. These functions acquire an overall reversal
of sign if used in Drell-Yan.

lattice QCD calculations [48] can aid in providing mean-
ingful parametrizations of the nonperturbative input over
the whole of phase space and open up interesting ques-
tions regarding the matching of purely nonperturbative
descriptions of the Sivers function to pQCD.

C. Evolved Gaussian Parametrizations

Figure 1 suggests that, apart from the tail at large
kT , the Sivers function continues to be well described by
a Gaussian shape, even after evolution to large Q. To
describe the evolution of a purely Gaussian parametriza-
tion, with the x and kT dependence factorized, requires
only a specification of the scale dependence of the Gaus-
sian parameters. This saves having to directly calculate
Eq. (44), and its transformation to momentum space,
separately for each value of Q and x. Because of the
general convenience of working with Gaussian functions,
we have obtained Gaussian fits for a range of Q starting
at Q =

√
2.4 GeV for the Bochum and Torino fits up

to Q = 90 GeV. The fits are obtained using the Wol-
fram Mathematica 7 FindFit routine, and examples
are shown as the dashed curves in Fig. 2. A table of the
resulting values for the Gaussian parameters is shown in
Table I. (Fortran, C++, and Wolfram Mathematica

7 code that produce evolved Gaussian fits is available

at [49].)

In Fig. 2, we illustrate the quality of the Gaussian
fits to the Sivers function at intermediate and large
Q (Q = 5 GeV and 91.19 GeV, respectively). In
practice, the Sivers effect is often probed via observ-
ables like Eq. (52), so we have plotted the integrand,
−2πk3TF

⊥ up
1T (x, kT ;µ,Q). Note that, after the evolution

to large Q, the −2πk3TF
⊥ up
1T (x, kT ;µ,Q) acquires a very

broad tail for both the Bochum and Torino fits. The
tail falls off slowly; for Q = 91.19 GeV, the ratio of the
value of the Bochum fit at kT = 10 GeV to the value at
kT = 5 GeV is about 0.65. This is roughly consistent
with the 1/kT fall-off at large kT that is expected from
the power counting arguments in Sec. III C. The last two
columns in Table I show the values of kT where the ra-
tio of the Gaussian fits to the original Sivers functions
is 0.8. That is, above kTorinoT,max (GeV) the Gaussian fits to
the evolved Torino Sivers function drop to less than 0.8
of the original evolved Sivers function and similarly for
kBochum
T,max .

That the description at small kT remains Gaussian is
not entirely surprising given that the input we use for
the nonperturbative evolution is Gaussian (gK(bT ) ∝ b2).
However, it should be emphasized that the perturbative
contribution to evolution results in a substantial modifi-
cation of the shape and normalization of the TMD PDF,

TMD evolution of up quark Sivers function 
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E. Transversity, Collins fragmentation functions and tensor charge

We plot transversity and the Collins fragmentation function in Fig. 3 at two different scales Q2 = 10 and 1000
GeV2. In order to evaluate functions we solve appropriate DGLAP equations for transversity Eq. (69) and twist-3
collins functions Eq. (71). Due to the fact that neither of the functions mixes with gluons, these distributions do not
change drastically in low-x region due to DGLAP evolution.
Transversity enters directly in SIDIS asymmetry and we find that the main constraints come from SIDIS data only,

its correlations with errors of Collins FF turn out to be numerically negligible. We thus vary only χ2
SIDIS and use

∆χ2
SIDIS = 22.2 for 90% C.L. and ∆χ2

SIDIS = 6.4 for 68% C.L. calculated using Eq. (123). Since the experimental
data has only probed the limited region 0.0065 < xB < 0.35, we define the following partial contribution to the tensor
charge

δq[xmin,xmax]
(
Q2
)
≡
∫ xmax

xmin

dxhq
1(x,Q

2) . (127)

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a

Extraction of transversity and Collins 
functions with TMD evolution  

(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)

transversity 
distributions

moment of Collins 
functions
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much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with
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much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M2

Z) = 0.125, of Ref. [18]. One can
see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 ∗ 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with

(Kang, Prokudin, Sun, Yuan, 
arXiv:1505.05589)
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TMD evolution yet



Figure 4: Diagrammatic representation of the origin of complex phase leading to the single-spin
asymmetry in SIDIS. The longer cut denotes the final state of the process, while the shorter
cut demonstrates the origin of the phase needed for the asymmetry.

3.2 Drell-Yan Process

We now perform a similar calculation for the Drell-Yan process in the same model consid-
ered above for deep inelastic scattering. We will consider the scattering of an antiquark on a
transversely-polarized proton with transverse spin eigenvalue � that produces a virtual photon,
which then decays into a dilepton pair with invariant mass q2 = Q2. This process is shown in
Fig. 5 at the level of virtual photon production: q + p" ! �⇤

+ X.

�

�

p

�
p p � r

�

q

��
q � r

r

(A)

(B)

k

q � kq � r

k � r

p � k p � r

q
��

Figure 5: Diagrams for the q + p" ! �⇤
+ X DY amplitude at one-loop order (A) and tree-

level (B). The incoming proton and anti-quark are denoted by the lower and upper solid lines
correspondingly, with the outgoing diquark denoted by the dashed line.

Following [9], we work in a generic frame collinear to the proton (~p? =

~
0?). We define the

longitudinal momentum fraction of the photon to be � ⌘ q+/p+ and the momentum fraction
exchanged in the t-channel to be � ⌘ r+/p+. As before, four-momentum conservation and the

15

SIDIS final state interactions (⇒ AN)

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344                                            
Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032Figure 6: Diagrammatic representation of the origin of complex phase leading to the single-spin

asymmetry in the Drell-Yan process. The longer cut denotes the final state of the process, while
the shorter cut demonstrates the origin of the phase needed for the asymmetry.

It is interesting to investigate the diagrammatic origin of the sign-flip in Eqs. (61) and (62).
To do that we consider the diagram contributing to the single-spin asymmetry in the Drell-Yan
process shown in Fig. 6. As follows from the calculation in Appendix B, the asymmetry in
the Drell-Yan case arises due to putting the (q � k)- and k-lines in Fig. 5 (A) (corresponding
to lines ¨ and ≠ in Figs. 13 and 14) on mass-shell: this is illustrated in Fig. 6 by the second
(shorter) cut, in analogy to Fig. 4. Comparing Figures 6 and 4, we see that the minus sign in
Eqs. (61) and (62) arises due to the replacement of the outgoing eikonal quark in Fig. 4 by the
incoming eikonal anti-quark in Fig. 6: this is in complete analogy with the original Wilson-line
time-reversal argument of Collins [8] (see also [36]).

However, a closer inspection of Figures 4 and 6 reveals that the cuts generating the complex
phase appear to be different: in Fig. 4 the (shorter) cut crosses the struck quark and the diquark
lines, while in Fig. 6 the (shorter) cut crosses the anti-quark line and the line of the quark in
the proton wave function. While we have already identified the outgoing quark/incoming anti-
quark duality in SIDIS vs. DY as generating the sign flip, the fact that in the proton’s wave
function the diquark is put on mass shell in SIDIS and the quark is put on mass shell in DY
makes one wonder why the absolute magnitudes of the asymmetries in Eq. (62) are equal. After
all, different cuts may lead to different contributions to the magnitudes of the asymmetry.

Ultimately the origin of Eq. (62) is in the fact that spin-asymmetry is a pseudo T -odd
quantity and the Wilson lines describing the outgoing quark in SIDIS and the incoming anti-
quark in DY are related by a time-reversal transformation [8]. However, in the diagrams at
hand the origin of the equivalence of the shorter cuts in Figs. 4 and 6 is as follows. Consider the
splitting of a polarized proton into a quark and a diquark as shown in Fig. 7: this subprocess
is common to both diagrams in Figs. 4 and 6. The essential difference between Figs. 4 and 6
that we are analyzing is in the fact that in Fig. 4 the diquark is on mass shell, while in Fig. 6
the quark is on mass shell.

Concentrating on the denominators of the quark and diquark propagators in Fig. 7 we shall
write for the SIDIS case of Fig. 4 (quark is off mass shell, diquark is on mass shell)

1

k2
�
�
(p � k)

2 � �2
�

=

�1

p+ (

~k2
? + a2

)

�

 
k� � M2

p+
+

~k2
? + �2

(1 � �) p+

!
⇡ �1

p+ (

~k2
? + a2

)

�(k�
), (66)

where we have used Eqs. (21), (34), and (30) along with x ⇡ �, and, in the last step, neglected
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1T ]DYopen issues in TMD phenomenology
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⊗
k⊥

•
-k⊥

but the the Sivers effect has a simple physical picture…

PT � k�

spin

spin

left-right spin asymmetry for the process �⇤q ! q

the spin-k⊥ correlation is an intrinsic property of the 
nucleon; it should be related to the parton orbital motion 

fq/p,S(x,k?) = fq/p(x, k?) +
1
2
�N

fq/p"(x, k?) S · (p̂⇥ k̂?)

= fq/p(x, k?)� k?
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?q
1T (x, k?) S · (p̂⇥ k̂?)



7

W y
-0.5 0 0.5

N
 A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W y
-0.5 0 0.5

N
 A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ν + l→ +W

/d.o.f. = 7.4  /62χGlobal 
KQ (assuming ‘‘sign change’’)

)-1 p-p 500 GeV (L = 25 pbSTAR
 < 10 GeV/cW

T0.5 < P

3.4% beam pol. uncertainty not shown

W y
-0.5 0 0.5

N
 A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

W y
-0.5 0 0.5

N
 A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

ν - l→ -W

/d.o.f. = 19.6  /62χGlobal 
KQ (no ‘‘sign change’’)

)-1 p-p 500 GeV (L = 25 pbSTAR
 < 10 GeV/cW

T0.5 < P

3.4% beam pol. uncertainty not shown
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with the non TMD-evolved KQ [11] model, assuming (solid line) or excluding (dashed line) a sign change in the Sivers function.
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FIG. 3. [Color online] The amplitude of the transverse single-spin asymmetry for W± and Z0 boson production measured by
STAR in proton-proton collisions at

√
s = 500 GeV with a recorded luminosity of 25 pb−1. The solid gray band represent the

uncertainty on the KQ [11] model due to the unknown sea quark Sivers function. The crosshatched region indicates the current
uncertainty in the theoretical predictions due to TMD evolution.

A combined fit on W+ and W− asymmetries, AN (yW ),
to the theoretical prediction in the KQ model (no TMD
evolution), shown in Fig. 4, gives a χ2/ndf = 7.4/6 as-
suming a sign-change in the Sivers function (solid line)
and a χ2/ndf = 19.6/6 otherwise (dashed line). The cur-
rent data thus favor theoretical models that include a
change of sign for the Sivers function relative to observa-
tions in SIDIS measurements, if TMD evolution effects
are small.
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FIG. 3: Predictions for W+ (a) and W

� (b) with sign change of Sivers functions compared with experimental data as function
of y. qT is integrated in the region [0, 5] GeV.

FIG. 4: Probability density functions for �2 of our predictions of W± asymmetry from all parameter sets used to calculate the
error band. Fitted normal distributions are shown as solid lines.

h�2
/n.o.d.i = 2.35 while sign change yields lower h�2

/n.o.d.i = 1.63. Notice that either scenario has tension with our
model, indeed the values of �2 are greater than zero. Using our results from Fig. 5 we may conclude that indeed W±

data provides an indication of the sign change according to Eq. (1).
Another interesting question that we would like to investigate in this paper is whether W± has any significant

impact on parameters of the model. Notice that we do not include W± data in our fit. Bayes theorem allows to
incorporate information from new data by applying re-weighting of probability densities for model parameters. The
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Transverse spin structure of the proton 
A natural next step in the investigation of nucleon structure is an expansion of our current picture of the 
nucleon by imaging the proton in both momentum and impact parameter space. At the same time we need to 
further our understanding of color interactions and how they manifest in different processes. In the new 
theoretical framework of transverse momentum dependent parton distributions (TMDs) we can obtain an 
image in the transverse as well as longitudinal momentum space (2+1 dimensions).  This has attracted 
renewed interest, both experimentally and theoretically in transverse single spin asymmetries (SSA) in 
hadronic processes at high energies, which have a more than 30 years history. First measurements at RHIC 
have extended the observations from the fixed-target energy range to the collider regime. Future PHENIX 
and STAR measurements at RHIC with transversely polarized beams will provide unique opportunities to 
study the transverse spin asymmetries in Drell-Yan lepton pair, direct photon, and W boson productions, and 
other complementary processes. Also evolution and universality properties of these functions can be studied. 
Polarized nucleon-nucleus collisions may provide further information about the origin of SSA in the forward 
direction and the saturation phenomena in large nuclei at small x. 

Transverse asymmetries at RHIC  

Single spin asymmetries in inclusive hadron production in proton-proton collisions have been measured at 
RHIC for the highest center-of-mass energies to date, ¥s=500 GeV.  Figure 6 summarizes the measured 
asymmetries from different experiments as functions of Feynman-x (xF ~ x1-x2) and transverse momentum. 
Surprisingly large asymmetries are seen that are nearly independent of  over a very broad range. To 
understand the observed significant SSAs one has to go beyond the conventional collinear parton picture in 
the hard processes.  Two theoretical formalisms have been proposed to generate sizable SSAs in the QCD 
framework: transverse momentum dependent parton distributions and fragmentation functions, which 
provide the full transverse momentum information and the collinear quark-gluon-quark correlation, which 
provides the average transverse information.   

 
At RHIC the pT-scale is sufficiently large to make the collinear quark-gluon-quark correlation formalism the 
appropriate approach to calculate the spin asymmetries. At the same time, a transverse momentum dependent 
model has been applied to the SSAs in these hadronic processes as well. Here, various underlying 
mechanisms can contribute and need to be disentangled to understand the experimental observations in 
detail, in particular the pT-dependence. These mechanisms are associated with the spin of the initial state 
nucleon (Sivers/Qiu-Sterman effects) and outgoing hadrons (Collins effects). We identify observables below, 
which will help to separate the contributions from initial and final states, and will give insight to the 
transverse spin structure of hadrons.  

 
Figure 6: Transverse single spin asymmetry measurements for neutral pions at different center-of-mass energies as function of 

Feynman-x (left) and pT-dependence at = 500 GeV (right). 

p
s = 19.4 GeV/c2, E704
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other experimental evidence of 
the Sivers and Collins effects

large PT

p" p! ⇡ X

Single Spin 
Asymmetry

AN =
d�" � d�#

d�" + d�#

talks by Pitonyak, Lajoie, Koike, Gamberg, Heppelman, Kim, Novitzky, ….
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main contribution from Sivers effect, can explain qualitatively 
most SIDIS and A_N data 

(M.A. M. Boglione, D’Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, 
PRD86 (2012) 074032; PRD88 (2013) 054023 )

TMD contributions to AN (assuming TMD factorisation) 



possible higher-twist contributions to AN 
(collinear factorisation)
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Towards an explanation of transverse single-spin asymmetries in
proton-proton collisions: the role of fragmentation in collinear factorization

Koichi Kanazawa,1,2 Yuji Koike,3 Andreas Metz,2 and Daniel Pitonyak4
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We study the transverse single-spin asymmetry for single-hadron production in proton-proton
collisions within the framework of collinear twist-3 factorization in Quantum Chromodynamics.
By taking into account the contribution due to parton fragmentation we obtain a very good de-
scription of all high transverse-momentum data for neutral and charged pion production from the
Relativistic Heavy Ion Collider. Our study may provide the crucial step towards a final solution to
the longstanding problem of what causes transverse single-spin asymmetries in hadronic collisions
within Quantum Chromodynamics. We show for the first time that, in a conceptually satisfactory
framework, it is possible to simultaneously describe spin/azimuthal asymmetries in proton-proton
collisions, semi-inclusive deep-inelastic scattering, and electron-positron annihilation.

PACS numbers: 12.38.-t, 12.38.Bx, 12.39.St, 13.75.Cs, 13.88.+e

Introduction The field of transverse single-spin asym-
metries (SSAs) in hard semi-inclusive processes began
some four decades ago with the observation of the large
transverse polarization (up to about 30%) of neutral Λ-
hyperons in the process pBe → Λ↑X at FermiLab [1].
People noticed early on that the näıve collinear parton
model cannot generate such large effects [2]. It was then
pointed out that SSAs for single-particle production in
hadronic collisions are genuine twist-3 observables for
which, in particular, collinear 3-parton correlations have
to be taken into account in order to have a proper descrip-
tion within Quantum Chromodynamics (QCD) [3]. This
formalism later on was worked out in more detail and
also successfully applied to SSAs in processes like hadron
production in proton-proton collisions, p↑p → hX — see,
e.g., Refs. [4–10]. Here we focus on SSAs in such reac-
tions, which were extensively investigated in fixed target
and in collider experiments.
Let us now look at the generic structure of the spin-

dependent cross section for A(P, S⃗⊥)+B(P ′) → C(Ph)+
X , where the 4-momenta and polarizations of the incom-
ing protons A, B and outgoing hadron C are specified.
In twist-3 collinear QCD factorization one has

dσ(S⃗⊥) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+ H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+ H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3) , (1)

with fa/A(t) (fb/B(t)) indicating the distribution func-
tion associated with parton a (b) in proton A (B), while
DC/c(t) represents the fragmentation function associated
with hadron C in parton c. The twist of the functions
is denoted by t. The hard factors corresponding to each
term are given by H , H ′, and H ′′, and the symbol ⊗ rep-
resents convolutions in the appropriate momentum frac-
tions. In Eq. (1) a sum over partonic channels and parton
flavors in each channel is understood.

The first term in (1) has already been studied in quite
some detail in the literature [5, 7–12]. It contains both
quark-gluon-quark correlations and tri-gluon correlations
in the polarized proton, where for the former one needs
to distinguish between contributions from so-called soft
gluon poles (SGPs) and soft fermion poles (SFPs). The
second term in (1), arising from twist-3 effects in the
unpolarized proton, was shown to be small [13]. Only re-
cently a complete analytical result was obtained for the
third term in (1), which describes the twist-3 contribu-
tion due to parton fragmentation [14].
For quite some time many in the community believed

that the first term in (1) dominates the transverse SSA
in p↑p → hX (typically denoted by AN ) for the produc-
tion of light hadrons (see, e.g., Refs. [5, 7, 10]), where the
SGP contribution is generally considered the most impor-
tant part. Note that the SGP contribution to AN is de-
termined by the Qiu-Sterman function TF [4, 5], which
can be related to the transverse-momentum dependent
(TMD) Sivers parton density f⊥

1T [15, 16]. For a given
quark flavor q, these entities satisfy [17]

T q
F (x, x) = −

∫

d2p⃗⊥
p⃗ 2
⊥

M
f⊥q
1T (x, p⃗ 2

⊥)
∣

∣

SIDIS
, (2)

where M is the nucleon mass. Because of the relation
in (2), one can extract TF from data on either AN or on
the Sivers transverse SSA in semi-inclusive deep-inelastic
scattering (SIDIS) ASiv

SIDIS. It therefore came as a ma-
jor surprise when an attempt failed to simultaneously
explain both AN and ASiv

SIDIS [11]. The striking result
pointed out in Ref. [11] was that the two extractions for
TF differ in sign. This “sign-mismatch” puzzle could
not be resolved by more flexible parameterizations of
f⊥
1T [18]. Also tri-gluon correlations are unlikely to fix
this issue [12], while SFPs may play some role [9].
At this point one may start to question the domi-

(1) Twist-3 contribution related to Sivers function  
(2) Twist-3 contribution related to Boer-Mulders function  

(3) Twist-3 fragmentation: has two contributions, 
one related to Collins function + a new one  

the first contribution with a twist-3 quark-gluon-quark 
correlator was expected to be the dominant one, but ….



sign mismatch  
(Kang, Qiu, Vogelsang, Yuan, PR D83 (2011) 094001) 
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into non-perturbative PDFs, FFs, or the correlation functions. Consequently, unlike for the TMD distributions, all
field operators defining the non-perturbative functions in the collinear factorization approach are evaluated at the
same light-cone separation with zero “+” and “⊥” components, as shown for example in Eq. (8).
Since the quark-gluon correlation functions in the collinear factorization approach have all their active partons’

transverse momenta integrated, these correlation functions can be related to k⊥-moments of the TMD parton distri-
bution functions. It was shown at the operator level [23, 33, 36] that the ETQS function Tq,F (x, x) is closely related
to the k⊥-moment of Sivers function:

gTq,F (x, x) = −
∫

d2k⊥
|k⊥|2

M
f⊥q
1T (x, k2⊥)|SIDIS (10)

where the subscript “SIDIS” emphasizes that the Sivers functions here are probed in the SIDIS process. We stress
again the importance of the sign convention for the coupling constant g in the definition of the gauge link. If the sign
convention used to define Tq,F (x, x) is different from that in the definition of f⊥q

1T (x, k2⊥), the difference will introduce
an extra factor “−1” in the relation between these two functions, so that there will be no minus sign on the right-hand
side of Eq. (10).
We emphasize that the operator definition in Eq. (8) does not completely fix the quark-gluon correlation function

Tq,F (x, x), unless the renormalization scheme is specified. As is well known from the case of ordinary PDFs, the matrix
element in Eq. (8) is ultraviolet (UV) divergent [39]. Like in the case of PDFs, the quark-gluon correlation function
is really defined in terms of the QCD factorization formalism. The leading UV divergent (the large k⊥) region of the
matrix element on the right-hand-side of Eq. (8) corresponds to the region of phase space with large parton virtuality,
and is required by factorization to be moved from the matrix element into the perturbatively calculated short-distance
functions. The removal or subtraction of the UV divergence is not unique, which leads to the factorization scheme
and scale (µ) dependence of the correlation functions Tq,F (x, x, µ) [40]. In this way, also the relation in Eq. (10) is
subject to the UV subtractions and the adopted factorization scheme, and hence not a unique identity. That said, the
relation (10) provides a natural “zeroth-order” connection between the Sivers and the ETQS functions. It plays an
important role in establishing the consistency between the TMD factorization approach and the collinear twist-three
quark-gluon correlation approach in the descriptions of the SSAs in SIDIS and the Drell-Yan process [33]. It also is a
useful starting point for phenomenological studies and is of much help in testing the various constraints on the quark
Sivers and quark-gluon correlation functions. In the following, we will therefore make use of relation (10), keeping
however in mind the caveats we have made regarding UV renormalization.

III. THE “SIGN MISMATCH”

The quark Sivers functions f⊥q
1T (x, k2⊥) (or equivalently, ∆Nfq/A↑(x, k⊥)) and the twist-3 quark-gluon correlation

functions Tq,F (x, x) have been extracted from experimental data on SSAs for single hadron production in SIDIS and
in hadron-hadron scattering, respectively. In this section, we compare the existing parameterizations of these two
functions and present our findings concerning the “sign mismatch”. We also introduce and discuss various loopholes
that might resolve the apparent inconsistency.

So far the quark Sivers functions have been extracted from the Asin(φh−φs)
UT azimuthal asymmetries in SIDIS. We

consider two such parametrizations here. One is from Ref. [10] (we refer it as “old Sivers”), the other one (“new Sivers”)
from Ref. [11] . They both parametrize the spin-averaged TMD PDFs f q

1 (x, k
2
⊥) and Sivers functions ∆Nfq/h↑(x, k⊥)

for each quark flavor q in the form

f q
1 (x, k

2
⊥) = f q

1 (x)g(k⊥), (11)

∆Nfq/h↑(x, k⊥) = 2Nq(x)f
q
1 (x)h(k⊥)g(k⊥), (12)

where f q
1 (x) is the quark’s spin-averaged collinear PDF,Nq(x) is a fitted function whose functional form is not relevant

for our discussion below, and g(k⊥) is assumed to have a Gaussian form,

g(k⊥) =
1

π⟨k2⊥⟩
e−k2

⊥/⟨k2
⊥⟩ (13)

with a fitting parameter ⟨k2⊥⟩ for the width. However, the two parameterizations adopt different functional forms for
the k⊥-dependence of the Sivers function:

old Sivers: h(k⊥) =
2k⊥M0

k2⊥ +M2
0

, (14)

new Sivers: h(k⊥) =
√
2e

k⊥
M1

e−k2
⊥/M2

1 , (15)

the same mismatch does not occur adopting TMD 
factorization; the reason is that the hard scattering 

part in higher-twist factorization is negative  

using the SIDIS Sivers function to build the twist-3 q-g-q 
correlator Tq,F

leads to sizeable value of AN, but with the wrong sign….

AN might be explained by new twist-3 
fragmentation functions  

(Kanazawa, Koike, Metz, Pitonyak, PRD 89 (2014) 111501)  
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but AN in lp → πX can be well explained by TMD 
factorisation + Weizsäcker-Williams approximation 

(U. D’Alesio, C. Flore, F. Murgia, in preparation - 
talk by U. D’Alesio at QCD evolution 2016)



Conclusions

Sivers and Collins effects are well established, with many 
transverse spin asymmetries resulting from them. 

Sivers function, TMDs and orbital angular momentum?        
QCD analysis of TMDs and GPDs sound and well developed.      

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical 
modelling, should lead to a true 3D imaging of the proton 

Waiting for JLab 12, new COMPASS results, and, crucially, for 
an EIC dedicated facility (talk by Aschenauer)….

Thank you!

The 3D nucleon structure is mysterious and fascinating. 
Many experimental results show the necessity to go beyond 

the simple collinear partonic picture and give new 
information. Crucial task is interpreting data and building a 

consistent 3D description of the nucleon.  


