The $22^{\text {nd }}$ International Spin Symposium (SPIN2016)

Baryon Electromagnetic Form Factors at BESIII

Dexu Lin
Helmholtz-Institut Mainz, Germany Institut für Kernphysik, JGU Mainz, Germay

(On Behalf of BESIII Collaboration)

 OF THE STANDARD MODELUIUC, IL, USA
Sep. 25-30, 2016

Outline

(1) Introduction and Motivation

- Introduction to BESIII
- Baryon EM Form Factors
(2) Measurements of Baryon EM FFs at BESIII
- Measurements of the Proton FFs
- Hyperon FFs Measurement
(3) Prospects and Summary

BEPCII and BESII
 BEPCII and BESU.

Double Storage Rings of BEPCII: A τ-charm factory

BESIII Spectrometer

MDC
$\frac{\delta p}{p}<0.5 \% @ 1 \mathrm{GeV}$
$\frac{\delta(d E / d x)}{d E / d x}<6 \%$

TOF
$\delta t 80$ ps Barrel St 110 ps Endcap

EMC

$$
\begin{gathered}
\frac{\delta E}{E}<2.5 \% @ 1 \mathrm{GeV} \\
\delta z=0.6 / \sqrt{E}
\end{gathered}
$$

MUC

$$
\delta(x y)<2 \mathrm{~cm}
$$

The BESIII Collaboration

Electromagnetic (EM) Form Factors (FFs)

* Spin s Baryon: $(2 s+1)$ EM FFs

Space-Like Region FFs Real
\&์ $\Gamma^{\mu}=F_{1}\left(q^{2}\right) \gamma^{\mu}+\frac{i \kappa}{M} F_{2}\left(q^{2}\right) \sigma^{\mu \nu} q_{\nu}$

Form Factors	
Dirac: $\quad F_{1}\left(q^{2}\right)$	
Pauli: $\quad F_{2}\left(q^{2}\right)$	
$\mathrm{G}_{\mathrm{E}}=\mathrm{F}_{1}+\frac{\kappa \mathrm{q}^{2}}{4 \mathrm{M}^{2}} \mathrm{~F}_{2}$	
$\mathrm{G}_{\mathrm{M}}=\mathrm{F}_{1}+\kappa \mathrm{F}_{2}$	

Time-Like Region
FFs Complex
Unphysical

$$
\begin{aligned}
& F_{1}(0)=Q \\
& F_{2}(0)=1
\end{aligned}
$$

$$
\left|G_{E}\left(4 M^{2}\right)\right|=\left|G_{M}\left(4 M^{2}\right)\right|
$$

FFs Measurements in Time-Like Region

$$
x \equiv 2 E_{\gamma} / \sqrt{s}
$$

	Energy Scan	Initial State Radiation
$\mathrm{E}_{\text {beam }}$	discrete	fixed
\mathcal{L}	low at each beam energy	high at one beam energy
σ	$\frac{d \sigma_{p \bar{F}}}{d(\cos \theta)}=\frac{\pi \alpha^{2} \beta C}{2 q^{2}}\left[\left\|G_{M}\right\|^{2}\left(1+\cos ^{2} \theta\right)\right.$	$\frac{d^{2} \sigma_{p \bar{p} \gamma}}{d q^{2} d \theta_{\gamma}}=\frac{1}{s} W\left(s, x, \theta_{\gamma}\right) \sigma_{p \bar{p}}\left(q^{2}\right)$
	$\left.+\frac{4 m_{\rho}^{2}}{q^{2}}\left\|G_{E}\right\|^{2} \sin ^{2} \theta\right]$	$W\left(s, x, \theta_{\gamma}\right)=\frac{\alpha}{\pi x}\left(\frac{2-2 x+x^{2}}{\sin ^{2} \theta_{\gamma}}-\frac{x^{2}}{2}\right)$
q^{2}	single at each beam energy	from threshold to s

Both techniques, energy scan and initial state radiation, can be used at BESIII

$$
\sim \frac{1}{400}
$$

The Status of Proton FFs in TL Region (Ratio)

\Rightarrow Only extraction of the ratio $\frac{\mathrm{G}_{\mathrm{E}} \mid}{\left|\mathrm{G}_{\mathrm{M}}\right|}$,
\Rightarrow Inconsistency between BaBar and PS170,
\Rightarrow Maximum at $2 \mathrm{GeV} / \mathrm{c}^{2}$,
\Rightarrow Extraction of an effective FF based on assumptions,

$M_{p \bar{p}}, \mathrm{GeV} / c^{2}$	N	$N_{b k g}$	$\left\|G_{E} / G_{M}\right\|$
$1.877-1.950$	1162	19 ± 10	$1.36_{-0.14-0.04}^{+0.15+0.05}$
$1.950-2.025$	1290	53 ± 16	$1.48_{-0.14-0.05}^{+0.16+0.06}$
$2.025-2.100$	1328	63 ± 14	$1.39_{-0.14-0.07}^{+0.15+0.07}$
$2.100-2.200$	1444	118 ± 28	$1.26_{-0.13-0.09}^{+0.14+0.10}$
$2.200-2.400$	1160	126 ± 26	$1.04_{-0.16-0.10}^{+0.16+0.10}$
$2.400-3.000$	879	122 ± 22	$1.04_{-0.25-0.15}^{+0.24+0.15}$

$\Rightarrow 10 \%-24 \%$ statistics uncertainties.

The Status of Proton FFs in TL Region (Effective FF)

Effective FFs of proton
$e^{+} e^{-} \rightarrow p \bar{p}$
$\sigma=\frac{4 \pi \alpha^{2} \beta C}{3 q^{2}}\left(\left|G_{M}\right|^{2}+\frac{1}{2 \tau}\left|G_{E}\right|^{2}\right)$
$\left|G_{e f f}\right|=\sqrt{\frac{3 q^{2}}{4 \pi \alpha^{2} \beta C} \frac{\sigma}{\left(1+\frac{1}{2 \tau}\right)}}$

Oscillation behavior of Eff. FF from BABAR data
Rescattering in final state?
(PRL 114, 232301 (2015))

The Status of Neutron FFs in TL Region (Effective FF)

$>$ Two direct measurements,
$>$ Non-zero cross section at threshold,
$>$ Flat in low range $\left(\sigma_{n} \sim \sigma_{p}\right)$.
$>\left|G_{\text {eff }}^{n}\right|$ larger than proton,
$>$ No individual FFs (or ratio).

The Status of Hyperons FFs in TL Region

> Only experimentally accessible in TL region
$>$ Scarce data by CLEO-c, BABAR and DM2

- Effective FF seems larger than for protons

Nucl. Phys. B 225-227 (2012) 205
Phys. Lett. B 739 (2014) 90

BESIII Data Samples

Proton FFs from Scan Data 2012

R-scan data: $157 \mathrm{pb}^{-1}$ in 12 points collected between 2.22 to 3.67 in 2011/2012.
$>$ Event selection of $e^{+} e^{-} \rightarrow p \bar{p}$:

- Two charged tracks from the vertex,
- PID as proton or antiproton,
- Kinematics constraints apllied,
- Background negligible or subtracted.
$>$ Cross section and effective FF
- Born cross section: $\sigma^{\text {Born }}=\frac{N^{\text {obs }}-N^{\text {bkg }}}{\epsilon(1+\delta) \mathcal{L}}$
- Effective FF: $G_{\text {eff }}=\sqrt{\frac{3 q^{2}}{4 \pi \alpha^{2} \beta C} \cdot \frac{\sigma^{\text {Borm }}}{1+1 / 2 \tau}}$
- Good agreement with previous ones,
- The precision improved.

Ratio of Proton FFs from Scan Data 2012

Extraction of the Ratio: $\frac{d \sigma}{d \cos \theta}=\mathcal{N}_{\text {norm }}\left[\left(1+\cos ^{2} \theta\right)+\left|R_{e m}^{2}\right|\left(1-\cos ^{2} \theta\right)\right]$

$\sqrt{s}(\mathrm{MeV})$	$\left\|G_{E} / G_{M}\right\|$	$\left\|G_{M}\right\|\left(\times 10^{-2}\right)$	χ^{2} / ndf
Fit on $\cos \theta_{p}$			
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74
$(3050.0,3080.0)$	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61

$>\left|G_{E}\right|$ and $\left|G_{M}\right|$ extracted individually $>$ Precision between 11% and 28%
$>$ Consistent with previous one at same q-range

ISR-Tagged Analysis for Proton

$\gamma_{\text {ISR }}$ Angular Distribution

>7 data samples $(\geq 3.773 \mathrm{GeV})$
$>$ Total luminosity $7.4 \mathrm{fb}^{-1}$
$>$ Event selction:

- Two charged tracks from vertex
- One high energy shower in EMC
- Kinematic constraints applied
$\mathrm{p} \overline{\mathrm{p}}$ Invariant Mass

Data at the energy 4.23 GeV $p \bar{p}$ invariant mass spectrum from threshold
> Background evaluation and subtraction

Preliminary Results from ISR-Tagged Analysis

$>$ Background subtraction and efficiency correcting
$>$ Combine the seven data samples
$>$ The proton FFs extracted between th. -3.0 GeV
$>$ Systematic uncertainty included

	$\delta R_{\text {em }} / R_{\text {em }}$	$\delta G_{\text {eff }} / G_{\text {eff }}$
stat.	$16 \%-34 \%$	$5 \%-32 \%$
syst.	$4 \%-8 \%$	$2 \%-12 \%$

LA: Large polar Angle of ISR photon
SA: Small polar Angle of ISR photon

Lambda FFs from Scan Data 2012

Two channels for 2.2324 GeV :

- Charged channel: $\bar{\Lambda} \rightarrow \overline{\mathrm{p}} \pi^{+}, \Lambda \rightarrow \mathrm{p} \pi^{-}$ pion pairs and annihilation from \bar{p}
- Neutral channel: $\bar{\Lambda} \rightarrow \bar{n} \pi^{0}, X$

$\sqrt{s} \mathrm{GeV}$	Reconstruction	$\sigma_{\text {Born }}(\mathrm{pb})$	$\|G\|\left(\times 10^{-2}\right)$
2.2324	$\Lambda \rightarrow p \pi^{-}, \bar{\Lambda} \rightarrow \bar{p} \pi^{+}$	$325 \pm 53 \pm 46$	
	$\bar{\Lambda} \rightarrow \bar{n} \pi^{0}$	$(3.0 \pm 1.0 \pm 0.4) \times 10^{2}$	
	combined	320 ± 58	63.4 ± 5.7
2.40		$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80		$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

Only charged channel for other data:

- Full reconstruction for 4 tracks

$$
\sigma=\frac{4 \pi \alpha^{2} \beta}{3 q^{2}}\left[1+\frac{1}{2 \tau}\right]\left|G_{e f f}\left(q^{2}\right)\right|^{2}
$$

- Kinematic constraints applied
$>$ Preliminary results for Λ
$>$ Non-zero behavior at threshold
$>$ Precision improved by 10%

Measurement of $e^{+} e^{-} \rightarrow \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}$at BESIII

Data samples collected closing to Λ_{c}^{+} threshold by BESIII in 2014

$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}\left(\mathrm{pb}^{-1}\right)$
4.5745	47.67
4.580	8.545
4.590	8.162
4.5995	566.9

First measurement of FFs ratio for charmed hyperon: very high statistical accuracy, Cross section measurement at four energy points with unprecedented statistical accuracy, Line-shape study for the charmed hyperons pair production closing to the threshold.

Prospects of the Baryon FFs at BESIII

- Proton FFs:
- Energy scan between 2.0 - 3.08 GeV .
- High precision $\left|G_{M}\right|$ and $\left|G_{E}\right|\left(\mathrm{R}_{\text {em }}\right)$ extraction individually.
- More data at high energy resonances for both ISR tagged and untagged analysis.
- Neutron FFs:
- Extract $\left|G_{M}\right|$ and $\left|G_{E}\right|\left(R_{e m}\right)$ first time from energy scan.
- ISR-tagged analysis for neutron effective FF from threshold.
- Hyperon FFs:
- Full determination of Λ FFs and polarization.
- Other hyperon channels including $\Sigma^{0}, \Sigma^{ \pm}, \Xi^{0}, \Xi^{-}$and Ω^{-}.
- Charmed hyperon Λ_{c}^{+}at threshold.

Summary

- Excellent laboratory for baryon form factors measurements at BESIII: energy scan and initial state radiation.
- Proton form factors have been extracted with a fraction of scan data (2012).
- Preliminary results on Proton form factors from ISR-tagged analysis with the data at resonances ($\geq 3.773 \mathrm{GeV}$).
- Preliminary results on Λ with a fraction of scan data (2012) at threshold.
- The measurements of baryon form factor will be significantly improved with the energy scan data from 2.0 GeV to 3.08 GeV

Summary

- Excellent laboratory for baryon form factors measurements at BESIII: energy scan and initial state radiation.
- Proton form factors have been extracted with a fraction of scan data (2012).
- Preliminary results on Proton form factors from ISR-tagged analysis with the data at resonances ($\geq 3.773 \mathrm{GeV}$).
- Preliminary results on Λ with a fraction of scan data (2012) at threshold.
- The measurements of baryon form factor will be significantly improved with the energy scan data from 2.0 GeV to 3.08 GeV

