The 22nd International Spin Symposium (SPIN2016)

Baryon Electromagnetic Form Factors at BESIII

Dexu Lin

Helmholtz-Institut Mainz, Germany Institut für Kernphysik, JGU Mainz, Germay

(On Behalf of BESIII Collaboration)

UIUC, IL, USA Sep. 25 - 30, 2016

D.X. Lin (HIM)

Baryon Electromagnetic Form Factors at

Sep. 25 - 20

Outline

1 Introduction and Motivation

- Introduction to BESIII
- Baryon EM Form Factors

2 Measurements of Baryon EM FFs at BESIII

- Measurements of the Proton FFs
- Hyperon FFs Measurement

Prospects and Summary

e

e⁻

BEPCII and BESIII

BESIII

Baryon Electromagnetic Form Factors at

ALINIA

D.X. Lin (HIM)

FOR

Double Storage Rings of BEPCII: A τ -charm factory

Beam energy: Optimum energy: Crossing Angle: 1.0 - 2.3 GeV 1.89 GeV ±11 mrad

Beam current: Designed Lumi: Achieved time:

0.91 A 1×10³³ cm⁻²s⁻¹ 5th April, 2016

The **BESIII** Collaboration

D.X. Lin (HIM)

Baryon Electromagnetic Form Factors at

ep. 25 - 30. 2016

Image: A matrix

୬ < ୍ର 6 / 21

Electromagnetic (EM) Form Factors (FFs)

FFs Measurements in Time-Like Region

	Energy Scan	Initial State Radiation		
E _{beam}	n discrete fixed			
L	low at each beam energy	high at one beam energy		
σ	$\frac{d\sigma_{p\bar{p}}}{d(\cos\theta)} = \frac{\pi\alpha^2\beta C}{2q^2} [G_M ^2 (1+\cos^2\theta)]$	$rac{d^2\sigma_{p\overline{p}\gamma}}{dq^2d heta_\gamma} = rac{1}{s}W(s,x, heta_\gamma)\sigma_{p\overline{p}}(q^2)$		
	$+rac{4m_{ ho}^2}{q^2} G_E ^2\sin^2 heta]$	$W(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$		
q^2	single at each beam energy	from threshold to <i>s</i>		
Both techniques, energy scan and initial state radiation, can be used at BESIII 1400				

D.X. Lin (HIM)

Baryon Electromagnetic Form Factors at

The Status of Proton FFs in TL Region (Ratio)

The Status of Proton FFs in TL Region (Effective FF)

The Status of Neutron FFs in TL Region (Effective FF)

The Status of Hyperons FFs in TL Region

12 / 21

Λ

BESIII Data Samples

Proton FFs from Scan Data 2012

R-scan data: 157 pb⁻¹ in 12 points collected between 2.22 to 3.67 in 2011/2012.

- > Event selection of $e^+e^- \rightarrow p\overline{p}$:
 - Two charged tracks from the vertex,
 - PID as proton or antiproton,
 - Kinematics constraints apllied,
 - Background negligible or subtracted.

> Cross section and effective FF • Born cross section: $\sigma^{Born} = \frac{N^{obs} - N^{bkg}}{\epsilon(1+\delta)\mathcal{L}}$

- Effective FF: $G_{eff} = \sqrt{\frac{3q^2}{4\pi\alpha^2\beta C} \cdot \frac{\sigma^{Born}}{1+1/2\tau}}$
- Good agreement with previous ones,
- The precision improved.

PRD91. (2015) 112004

Ratio of Proton FFs from Scan Data 2012 PRD91. (2015) 112004

D.X. Lin (HIM)

Baryon Electromagnetic Form Factors at

ISR-Tagged Analysis for Proton

> Event selction.

10⁶

10⁵

- Two charged tracks from vertex
- One high energy shower in EMC
- Kinematic constraints applied
- Background evaluation and subtraction

Baryon Electromagnetic Form Factors at

A B F A B F

Data at the energy 4.23 GeV $p\overline{p}$ invariant mass spectrum from threshold

Preliminary Results from ISR-Tagged Analysis

- Background subtraction and efficiency correcting
- Combine the seven data samples \succ
- The proton FFs extracted between \succ th. - 3.0 GeV
- Systematic uncertainty included

	$\delta R_{em}/R_{em}$	$\delta G_{eff}/G_{eff}$
stat.	16% - 34%	5% - 32%
syst.	4% - 8%	2% - 12%

LA: Large polar Angle of ISR photon SA: Small polar Angle of ISR photon Sar

Lambda FFs from Scan Data 2012

Two channels for 2.2324 GeV:

- Charged channel: $\overline{\Lambda} \to \overline{p}\pi^+$, $\Lambda \to p\pi^$ pion pairs and annihilation from \overline{p}
- Neutral channel: $\overline{\Lambda} \rightarrow \overline{n}\pi^0$, X π^0 reconstructed and \overline{n} shower

Only charged channel for other data:

- Full reconstruction for 4 tracks
- Kinematic constraints applied

- ➤ Preliminary results for Λ
- Non-zero behavior at threshold
- ➤ Precision improved by 10%

\sqrt{s} GeV	Reconstruction	σ_{Born} (pb)	G (×10 ⁻²)
2.2324	$\Lambda \rightarrow p\pi^-, \overline{\Lambda} \rightarrow \overline{p}\pi^+$	$325 \pm 53 \pm 46$	
	$\overline{\Lambda} \rightarrow \bar{n}\pi^0$	$(3.0 \pm 1.0 \pm 0.4) \times 10^2$	
	combined	320 ± 58	63.4 ± 5.7
2.40		$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$
2.80		$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$
3.08		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

$$\sigma = rac{4\pi lpha^2 eta}{3q^2} [1+rac{1}{2 au}] |G_{eff}(q^2)|^2$$

Baryon Electromagnetic Form Factors at

Sep. 25 - 30, 20

Measurement of $e^+e^- \rightarrow \Lambda_c^+ \bar{\Lambda}_c^-$ at BESIII

Data samples collected closing to Λ_c^+ threshold by BESIII in 2014

\sqrt{s} (GeV)	$\mathcal{L}~(pb^{-1})$
4.5745	47.67
4.580	8.545
4.590	8.162
4.5995	566.9

First measurement of FFs ratio for charmed hyperon: very high statistical accuracy,

Cross section measurement at four energy points with unprecedented statistical accuracy,

Line-shape study for the charmed hyperons pair

production closing to the threshold.

D.X. Lin (HIM)

Baryon Electromagnetic Form Factors at

Prospects of the Baryon FFs at BESIII

• Proton FFs:

- Energy scan between 2.0 3.08 GeV.
- High precision $|G_M|$ and $|G_E|$ (R_{em}) extraction individually.
- More data at high energy resonances for both ISR tagged and untagged analysis.

• Neutron FFs:

- Extract $|G_M|$ and $|G_E|$ (R_{em}) first time from energy scan.
- ISR-tagged analysis for neutron effective FF from threshold.

• Hyperon FFs:

- Full determination of Λ FFs and polarization.
- Other hyperon channels including Σ^0 , Σ^{\pm} , Ξ^0 , Ξ^- and Ω^- .
- Charmed hyperon Λ_c^+ at threshold.

Sep 25 - 30 2

Summary

- Excellent laboratory for baryon form factors measurements at BESIII: energy scan and initial state radiation.
- Proton form factors have been extracted with a fraction of scan data (2012).
- Preliminary results on Proton form factors from ISR-tagged analysis with the data at resonances (≥ 3.773 GeV).
- Preliminary results on Λ with a fraction of scan data (2012) at threshold.
- The measurements of **baryon form factor** will be **significantly improved** with the energy scan data from 2.0 GeV to 3.08 GeV

・ロト ・ 何ト ・ ヨト ・ ヨト …

Summary

- Excellent laboratory for baryon form factors measurements at BESIII: energy scan and initial state radiation.
- Proton form factors have been extracted with a fraction of scan data (2012).
- Preliminary results on Proton form factors from ISR-tagged analysis with the data at resonances (\geq 3.773 GeV).
- Preliminary results on Λ with a fraction of scan data (2012) at threshold.
- The measurements of **baryon form factor** will be **significantly improved** with the energy scan data from 2.0 GeV to 3.08 GeV

Baryon Electromagnetic Form Factors at

oncedence in the second redering a second rederi