Exploring a Possible Origin of an Abnormal $10 \sim 15$ degree Spin Tilt Observed at RHIC Polarimeters

For the collaboration
François Méot
Collider-Accelerator Department
Brookhaven National Laboratory
Contents
1 ACCELERATION OF POLARIZED PROTONS AT RHIC 3
2 POLARIZATION MEASUREMENTS AT RHIC3 PERTURBATION ON SNAKE ANGLES8
4 PLANS FOR FUTURE 15
BIBLIOGRAPHY 16

1 ACCELERATION OF POLARIZED PROTONS AT RHIC

\diamond Polarization measurements in RHIC monitor

- polarization loss due to snake resonances during ramp (≈ 300 s to $250 \mathbf{G e V}$), - gradual polarization loss during the typical 8 hours physics store.

2 POLARIZATION MEASUREMENTS AT RHIC

- Two different devices ensure polarization measurements in RHIC :
(i) A polarized hydrogen jet target :
\diamond Measures P_{Y} only (1 pair of detectors)
\diamond Provides calibration for the pC polarimeters (and to the physics program), accuracy $\sigma_{\frac{\Delta P}{P}} \approx \mathbf{2 - 3 \%}$.

(ii) A fast carbon target $\mathbf{p C}$ polarimeter :
\diamond beam polarization in \sim a minute
\diamond target : ultra-thin carbon ribbon swept through the beam
\diamond Three pairs of detectors at 90° and 45° for measurement of
P_{Y} (vertical) and P_{X} (radial) polarization components

$\diamond P_{Y}$ is measured $\left\{\begin{array}{l}\text { by } 2-5 \text { pair, } \\ \text { as }\left(P_{U}+P_{V}\right) \cos (45 \mathrm{deg} .) \text {, with 1-4 pair }\left(\mathrm{P}_{\mathrm{V}}\right) \text { and 3-6 pair }\left(\mathrm{P}_{\mathrm{U}}\right)\end{array}\right.$
\diamond 1-4 and 3-6 pairs provide vertical tilt ϕ of (\mathbf{x}, y) plane polarization component :

$$
\tan (\phi)=\frac{P_{X}}{P_{Y}}=\frac{P_{U}-P_{V}}{P_{U}+P_{V}}
$$

A SUMMARY OF POLARIZATION MEASUREMENTS

- Polarization measurements at $\mathbf{p C}$ polarimeters are performed
\diamond shortly after injection, before the ramp, $\mathrm{E}=23.8 \mathrm{GeV}$
\diamond at store $\left\{\begin{array}{l}\text { one before collision (one more after rotator ramp if any) } \\ \text { then every } 2-3 \text { hours during collision }\end{array}\right.$ (measurement induces $<0.5 \%$ beam loss, and physics run has to stop)

MEASURED TILT ANGLE
 AT pC (degree)

Blue ring
Yellow ring
Run \# E [GeV]
RUN 11 - transverse polarization at IPs
injection $-\mathbf{0 . 9 2}$ -
$\mathbf{2 5 0}-\mathbf{- 2 . 8 8} \quad-1.07 \quad$ No tilt observed at Run 11
RUN 12 - transverse polarization at IPs

injection	$-\mathbf{0 . 8 6 -}$		
$\mathbf{1 0 0}$	$\mathbf{3 . 0 5}$	-0.97	Tilt observed at 255 GeV $\mathbf{2 5 5}$
	$\mathbf{1 3 . 8}$	-6.49	from Run 12 on

RUN 13 - longitudinal polarization at IPs
injection - 1.25 -
$\mathbf{2 5 5} \quad 13.28 \sim \mathbf{1 6 . 1 4} \quad-9.17 \sim-8.40 \quad \begin{aligned} & \text { Interval includes pre/post rotator }\end{aligned}$
RUN 15 - Periods 1, 3 longitudinal / Period 2 transverse polarization at IPs

| injection | $\mathbf{0 . 4 0} \sim \mathbf{1 . 6 5}$ | | $1.47 \sim 3.20$ | |
| ---: | :--- | ---: | :--- | ---: | :--- |
| $\mathbf{1 0 0}$ | | $\mathbf{3 . 7 2} \sim \mathbf{4 . 8 6}$ | | $1.27 \sim 3.20$ |

- Crucial point : What is the spin tilt at H-jet, located at IP12 ?
\diamond To date it has been assumed \mathbf{H}-jet measures polarization magnitude $|\vec{P}|$, in calibrating pC polarimeters.

If there is a spin tilt $\phi \neq 0$ at IP12, then measured $|\vec{P}|$ is affected by a factor $\cos (\phi)$, e.g., main tilts measured during Run13/255 GeV :

- Yellow at store: $\phi=-9 \mathrm{deg} \rightarrow \cos (\phi)=0.99$,
-Blue at store: $\quad \phi=+\mathbf{1 6 d e g} \rightarrow \cos (\phi)=0.96, \quad \mathbf{4 \%}$ scale shift, significant, need to account for in polarization measurements...

3 PERTURBATION ON SNAKE ANGLES

- Reminder
\diamond RHIC snake is a doublet of paired helices with central vertical symmetry
$\Rightarrow\left\{\begin{array}{l}\text { does not introduce orbit defect, } \\ \text { precession axis is in median plane. }\end{array}\right.$

\diamond fields B_{1} and B_{2} in respectively the outer and inner helix in a pair can be controlled $\Rightarrow\left\{\begin{array}{l}\text { precession axis is at } \mu= \pm 45^{\circ}, \\ \phi=180^{\circ} \text { spin rotation ('‘full snake"). }\end{array}\right.$

Figure 6: Snake orbit cómponents. $\gamma=25$. OH fieldmap

- Principle of these investigations regarding the
effect errors on the spin rotation angles ϕ_{1}, ϕ_{2} in RHIC snakes :
$\diamond\left(\phi_{1}, \phi_{2}\right)$ scans are performed, both angles are varied over $\pm 20^{\circ}$ centered on the nominal $\phi_{1,2}=180^{\circ}$ (spin flip).
\diamond These $\left(\phi_{1}, \phi_{2}\right)$ scans are repeated to include various additional perturbations :
- defect closed orbit with various amplitudes,
- errors on the orientation of the spin precession axis μ_{1}, μ_{2} in snakes 1 and 2,
- vertical orbit separation at non-intersecting IRs
- etc.
- A first example : ideal RHIC optics, 255 GeV , zero vertical orbit
\diamond Because the vertical orbit is zero,
the vertical tilt angle of \vec{n}_{0} is the same at pC and HJet polarimeters ;
(Note that \vec{n}_{0} azimuth is different, due to $\mathbf{D 0}$ and $\mathbf{D X}$ separation dipoles between both.)

- Second example : case of a (large) 0.26 mm rms vertical orbit
\diamond Such large vertical orbit is
about 10 times the regular one ($25 \mu \mathrm{~m} \mathrm{rms}$).

\diamond Similar \vec{n}_{0} tilts result at $\mathbf{p C}$ and HJet polarimeters,
- A third example : vertical separation bumps at all IPs
\diamond This is the configuration at end of ramp, before going to collision.
\diamond Random orbit here is regular $\mathbf{2 5} \mu \mathrm{m}$ rms.

\diamond The low- β quadrupole triplet between HJet and pC polarimeters causes slightly different \vec{n}_{0} tilt at $\mathbf{p C}$ and HJet.

AND MORE :

- A small error on μ_{1}
$\diamond \mu_{1}=-45 \mp 10$ deg, $\mu_{2}=+45$ deg.

- At injection, 23.8 GeV
$\diamond 0.26 \mathrm{~mm}$ rms vertical orbit \rightarrow similar outcomes
- CONCLUSION TO THESE SPIN \vec{n}_{0} TRACKING SIMULATIONS :
- All different conditions explored (closed orbit, perturbations on μ, etc.)
\diamond yield similar \vec{n}_{0} tilt excursions over $180 \pm \mathbf{2 0}{ }^{\circ}$ scans of ϕ_{1}, ϕ_{2}
\diamond namely, at both pC and at HJet polarimeters :
- \vec{n}_{0} tilt angle ~ 10 degree for $\pm \mathbf{1 0}$ deg. error on the snake angles ϕ_{1}, ϕ_{2}
- and this, independent of energy : $250 \mathrm{GeV}, 100 \mathrm{GeV}$
or injection energy 23.8 GeV.

4 PLANS FOR FUTURE

- Measurements are planned in Run17. It will take 3 stores for $\pm 1^{\circ}$ accuracy on measurement of \vec{n}_{0} tilt at pC polarimeters.
\diamond We will re-measure spin tilt at 250 GeV (case of Run 11) and 255 GeV (case of Run 12, 13, 15)
- We will re-visit RHIC snakes magnetic field maps, and snake settings
\diamond we plan to produce a 3-D OPERA map of the 4-helix magnet, and
- to review the transfer functions from coil currents to helix magnetic fields B_{1}, B_{2} to spin rotation,
- to further investigate spin \vec{n}_{0} based on tracking simulations in RHIC using the OPERA field maps of the two snakes.

References

[1] W. Schmidke BNL/C-AD spin meeting, for the polarimetry group 25.02.15.
[2] RHIC design report, Chap. 4.
[3] PAC and IPAC conferences
[4] Optimization of spin angles from a helix field map, A. Luccio, Spin Note AGS/RHIC/SN 42, BNL, 1996.
[5] N. Okamura et al., AGS/RHIC SN 030 (1996).

