22nd International Spin Symposium, UIUC, September 25-30, 2016

Exploring a Possible Origin of an Abnormal $10{\sim}15$ degree Spin Tilt Observed at RHIC Polarimeters

For the collaboration
François Méot
Collider-Accelerator Department
Brookhaven National Laboratory

16

1 ACCELERATION OF POLARIZED PROTONS AT RHIC 2 POLARIZATION MEASUREMENTS AT RHIC 4 3 PERTURBATION ON SNAKE ANGLES 4 PLANS FOR FUTURE 15

BIBLIOGRAPHY

1 ACCELERATION OF POLARIZED PROTONS AT RHIC

- **⋄ Polarization measurements in RHIC monitor**
 - polarization loss due to snake resonances during ramp ($\approx 300\,\mathrm{s}$ to 250 GeV),
 - gradual polarization loss during the typical 8 hours physics store.

2 POLARIZATION MEASUREMENTS AT RHIC

- Two different devices ensure polarization measurements in RHIC:
 - (i) A polarized hydrogen jet target :
 - \diamond Measures P_Y only (1 pair of detectors)
 - Provides calibration for the pC polarimeters (and to the physics program),

accuracy $\sigma_{\frac{\Delta P}{P}} \approx$ 2-3%.

(ii) A fast carbon target pC polarimeter:

- \diamond beam polarization in \sim a minute
- target: ultra-thin carbon ribbonswept through the beam
- ♦ Three pairs of detectors at 90° and 45° for measurement of

 P_Y (vertical) and P_X (radial) polarization components

pC carbon target

- $\diamond P_Y \text{ is measured } \left\{ \begin{array}{ll} \textbf{by} & \textbf{2-5 pair,} \\ \textbf{as} & (P_U + P_V) \cos(45 \mathrm{deg.}), \textbf{with} & \textbf{1-4 pair} \ (P_V) \textbf{and} & \textbf{3-6 pair} (P_U) \end{array} \right.$
- \diamond 1-4 and 3-6 pairs provide vertical tilt ϕ of (x,y) plane polarization component :

$$\tan(\phi) = \frac{P_X}{P_Y} = \frac{P_U - P_V}{P_U + P_V}$$

A SUMMARY OF POLARIZATION MEASUREMENTS

- Polarization measurements at pC polarimeters are performed
 - \diamond shortly after injection, before the ramp, E = 23.8 GeV
 - $\diamond \ at \ store \ \begin{cases} \ one \quad before \quad collision \ (one \ more \ after \ rotator \ ramp \ if \ any) \\ then \quad every \ \ 2-3 \ hours \ during \ collision \end{cases}$

(measurement induces < 0.5% beam loss, and physics run has to stop)

MEASURED TILT ANGLE AT pC (degree)					
		Blue ring	Yellow ring		
Run#	E [GeV]	<u> </u>			
RUN 11 - t	ransverse pola	arization at IPs			
	injection	- 0.92 $-$			
	250	-2.88	-1.07	No tilt observed at Run 11	
RUN 12 - t	ransverse pola	arization at IPs			
	injection	- 0.86 $-$			
	100	3.05	-0.97		
	255	13.8	-6.49	Tilt observed at 255 GeV from Run 12 on	
RUN 13 - 1	ongitudinal po injection	olarization at IPs — 1.2	5 —		
	255	$\textbf{13.28} \sim \textbf{16.14}$	-9.17 \sim -8.40	Interval includes pre/post rotator ramp, pre/post Run12 lattice	
RUN 15 - F	Periods 1, 3 lo	ngitudinal / Period 2 t	ransverse polariz	zation at IPs	
	injection	$0.40\sim1.65$	$1.47 \sim 3.20$		
	100	$\textbf{3.72} \sim \textbf{4.86}$	$\textbf{1.27} \sim \textbf{3.20}$		

• Crucial point: What is the spin tilt at H-jet, located at IP12?

 \diamond To date it has been assumed H-jet measures polarization magnitude $|\vec{P}|$, in calibrating pC polarimeters.

 \diamond If there is a spin tilt $\phi \neq 0$ at IP12, then measured $|\vec{P}|$ is affected by a factor $\cos(\phi)$, e.g., main tilts measured during Run13 / 255 GeV :

• Yellow at store: $\phi = -9\deg \rightarrow \cos(\phi) = 0.99$, 1% scale shift

•Blue at store: $\phi = +16\deg \rightarrow \cos(\phi) = 0.96$, 4% scale shift,

significant, need to account for in polarization measurements...

3 PERTURBATION ON SNAKE ANGLES

• Reminder

♦ RHIC snake is a doublet of paired helices

with central vertical symmetry

does not introduce orbit defect,
precession axis is in median plane.

 \diamond fields B_1 and B_2 in respectively the outer and inner helix in a pair can be controlled $\Rightarrow \begin{cases} \textbf{precession axis is at } \mu = \pm 45^o, \\ \phi = 180^o \, \textbf{spin rotation} \, \textbf{("full snake")}. \end{cases}$

Figure 6: Snake orbit components. $\gamma = 25$. OH fieldmap.

• Principle of these investigations regarding the

effect errors on the spin rotation angles $\phi_1, \ \phi_2$ in RHIC snakes :

 $\diamond (\phi_1, \phi_2)$ scans are performed,

both angles are varied over $\pm 20^o$ centered on the nominal $\phi_{1,2}=180^o$ (spin flip).

- \diamond These (ϕ_1,ϕ_2) scans are repeated to include various additional perturbations :
- defect closed orbit with various amplitudes,
- errors on the orientation of the spin precession axis μ_1, μ_2 in snakes 1 and 2,
- vertical orbit separation at non-intersecting IRs
- etc.

- A first example : ideal RHIC optics, 255 GeV, zero vertical orbit
- \diamond Because the vertical orbit is zero, the vertical tilt angle of \vec{n}_0 is the same at pC and HJet polarimeters; (Note that \vec{n}_0 azimuth is different, due to D0 and DX separation dipoles between both.)

• Second example : case of a (large) 0.26 mm rms vertical orbit

 \diamond Such large vertical orbit is about 10 times the regular one (25 μ m rms).

 \diamond Similar \vec{n}_0 tilts result at pC and HJet polarimeters,

since the vertical orbit only induces small, random, $ec{B}_x$

(hence, not much effect of the low- β quadrupoles, located between pC and HJet).

• A third example : vertical separation bumps at all IPs

- ⋄ This is the configuration at end of ramp, before going to collision.
- \diamond Random orbit here is regular 25 μ m rms.

 \diamond The low- β quadrupole triplet between HJet and pC polarimeters causes slightly different \vec{n}_0 tilt at pC and HJet.

AND MORE:

• A small error on μ_1

$$\phi \mu_1 = -45 \mp 10 \text{ deg}, \mu_2 = +45 \text{ deg}.$$

- beam energy 100 GeV
- ♦ 0.26 mm *rms* vertical orbit

- At injection, 23.8 GeV
- \diamond 0.26 mm *rms* vertical orbit \rightarrow similar outcomes

• CONCLUSION TO THESE SPIN \vec{n}_0 TRACKING SIMULATIONS :

• All different conditions explored (closed orbit, perturbations on μ , etc.)

 \diamond yield similar \vec{n}_0 tilt excursions over 180 \pm 20° scans of ϕ_1, ϕ_2

⋄ namely, at both pC and at HJet polarimeters :

- \vec{n}_0 tilt angle ~ 10 degree for ± 10 deg. error on the snake angles ϕ_1 , ϕ_2

- and this, independent of energy: 250 GeV, 100 GeV or injection energy 23.8 GeV.

4 PLANS FOR FUTURE

- Measurements are planned in Run17. It will take 3 stores for $\pm 1^o$ accuracy on measurement of \vec{n}_0 tilt at pC polarimeters.
- ♦ We will re-measure spin tilt at 250 GeV (case of Run 11) and 255 GeV (case of Run 12, 13, 15)
- We will re-visit RHIC snakes magnetic field maps, and snake settings
 - **old we plan to produce a 3-D OPERA map of the 4-helix magnet, and**
- to review the transfer functions from coil currents to helix magnetic fields $B_1,\ B_2$ to spin rotation,
- to further investigate spin \vec{n}_0 based on tracking simulations in RHIC using the OPERA field maps of the two snakes.

THANK YOU

References

- [1] W. Schmidke BNL/C-AD spin meeting, for the polarimetry group 25.02.15.
- [2] RHIC design report, Chap. 4.
- [3] PAC and IPAC conferences
- [4] Optimization of spin angles from a helix field map, A. Luccio, Spin Note AGS/RHIC/SN 42, BNL, 1996.
- [5] N. Okamura et al., AGS/RHIC SN 030 (1996).