» Proton Polarimetry with the Hydrogen Jet Target at RHIC in Run 2015«

Oleg Eyser
for the RHIC Polarimetry Group
$22^{\text {nd }}$ International Spin Symposium
University of Illinois, Urbana-Champaign
September 26-30, 2016

Improvement in Beam Polarization

Consistent improvement in delivered luminosity and beam polarization.

Polarization \& Asymmetries

$s_{z}= \pm \frac{1}{2} \hbar \Rightarrow P=\frac{n^{\uparrow}-n^{\downarrow}}{n^{\uparrow}+n^{\downarrow}}$
(elastic scattering)

$$
A_{N}=\frac{d \sigma_{\text {left }}-d \sigma_{\text {right }}}{d \sigma_{\text {left }}+d \sigma_{\text {right }}}
$$

$$
\varepsilon=A_{N} \cdot P=\frac{N_{L}-N_{R}}{N_{L}+N_{R}}
$$

(*) perpendicular to polarization vector

Carbon polarimeters
Two per ring

Fast measurement
normalization
$\delta P / P \approx 4 \%$
Beam polarization profile
Polarization decay (time dependence)

Hydrogen jet polarimeter
Polarized target
Continuous operation
$\delta P / P \approx 5-8 \%$ per fill

Elastic Recoil Protons

\square
atomic hydrogen target
proton beam $100 / 250 \mathrm{GeV}$

Recoil proton from elastic scattering Independent of beam energy, species

Non-relativistic: $T_{\text {kin }}=\frac{1}{2} m v^{2}$

Detector Setup

Set of eight Hamamatsu Si strip detectors
12 strips, each 3.75 mm wide, $500 \mu \mathrm{~m}$ thick
Uniform dead layer $\approx 1.5 \mu \mathrm{~m}$

QA: Kinematics

Elastic proton recoil selection:

After energy and T_{0} calibration

$$
\begin{gathered}
\left|M_{\text {miss }}-m_{p}\right|<100 \mathrm{MeV} / c^{2} \\
|\Delta t|<5 \mathrm{~ns}
\end{gathered}
$$

inside blue bottom

$\mathrm{E}_{\text {kin }}(\mathrm{MeV})$

Fit to ALL data, plotted under the distributions in each detector

Si-strips:
red - central to
blue - downstream

Detector Alignment

Magnetic holding field for target polarization changes acceptance of detectors on left and right sides

Outer correction field is adjusted for compensation
For missing proton mass:

$$
\sin \theta=\frac{p^{\prime}}{2 \cdot m_{p} \cdot p_{B}}\left(2 \cdot E+2 \cdot m_{p}-T_{R}\right)
$$

Missing mass:

$$
M_{\text {miss }}^{2}=\binom{E+m_{p}-E^{\prime}}{p_{B}-p^{\prime}}^{2}
$$

Non-relativistic recoil:

$$
p^{\prime}=\sqrt{2 m_{p} T_{R}}
$$

example detector

Compare with geometry of detector (averaged over 12 strips
$p+A u$ and $p+A l$ operation had a significant beam angle on the jet target

Asymmetries \& Polarization

$$
\varepsilon=A_{N} \cdot P
$$

$$
P_{\text {Beam }}=-\frac{\varepsilon_{\text {Beam }}}{\varepsilon_{\text {Target }}} P_{\text {Target }}
$$

Polarization independent background

$$
\varepsilon=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}+2 \cdot N_{b g}} \Rightarrow \frac{\varepsilon_{B}}{\varepsilon_{T}}=\frac{N_{B}^{\uparrow}-N_{B}^{\downarrow}}{N_{T}^{\uparrow}-N_{T}^{\downarrow}}
$$

$$
2
$$

Polarization dependent background

$$
\varepsilon=\frac{\varepsilon_{i n c}-r \cdot \varepsilon_{b g}}{1-r}
$$

background fraction $r=N_{b g} / N$

Signal \& Background I

Abort gaps are not aligned at polarimeter location
Use abort gaps for background and clean signal identification

RHIC bunch

Signal \& Background II

Δt : difference of measured time-of-flight to elastic signal, $t\left(T_{R}\right)$
$\Delta m_{\text {miss }}$: difference of missing mass to scattered proton (geometry after alignment correction)

Example (logarithmic z-scale)

Position of elastic proton signal is independent of energy and detector Vertical stripes are a remnant of the spatial detector resolution

$$
\begin{gathered}
\left|M_{\text {miss }}-M_{p}\right|<50 \mathrm{MeV} / c^{2} \\
\left|M_{\text {miss }}-M_{p}\right|>120 \mathrm{MeV} / c^{2}
\end{gathered}
$$

Punch through cuts are already applied
Define signal and background regions by missing mass

Signal \& Background III

- inclusive (normalized to peak)

$$
\left|M_{\text {miss }}-m_{p}\right|<50 \mathrm{MeV} / c^{2}
$$

- background (normalized to signal at $18<\Delta t<25 \mathrm{~ns})$

$$
\left|M_{\text {miss }}-m_{p}\right|>120 \mathrm{MeV} / c^{2}
$$

- background fraction
- Background in yellow abort gap (should be clean blue signal)
- Signal in blue abort gap (should be only background from yellow beam)

Example (blue beam, $2<E_{\text {kin }}<3 \mathrm{MeV}$)

well described by normalization at $18<\Delta t<25 \mathrm{~ns}$

The normalization is same as above \rightarrow only for comparison of shape and source of background

Background Sources

Example (blue beam, $3<E_{\text {kin }}<4 \mathrm{MeV}$)

From $p+A u$ operation

Typical bunch shape of Au-beam seen in full background, dominates early background

Late background mainly from signal beam
Using signal cuts in blue abort gap: $\left|M_{\text {miss }}-m_{p}\right|<50 \mathrm{MeV} / c^{2}$

Fill-by-fill background fraction depends on conditions of both beams \rightarrow important for beam polarization measurement

Asymmetry Examples

$5.0<\mathrm{E}<6.0 \mathrm{MeV}$

$2.0<\mathrm{E}<3.0 \mathrm{MeV}$

From $\vec{p}+A u$ operation
Blue beam (proton on jet target)

Clear asymmetry within $\Delta t= \pm 5 \mathrm{~ns}$

Background asymmetry consistent with zero

Analyzing Power: $A_{N}(\vec{p}+p)$

Atomic hydrogen target polarization $P=96 \%$
Molecular component $R_{H_{2}}=3 \%$ (by mass)
Global uncertainty from target polarization not included
$-t$-range can be extended with punch-through protons

Analyzing Power: $A_{N}(\vec{p}+A)$

Atomic hydrogen target polarization $P=96 \%$
Molecular component $R_{H_{2}}=3 \%$ (by mass)
Global uncertainty from target polarization not included
$-t$-range can be extended with punch-through protons

Longitudinal Bunch Profile: $p+p$

- Full run 15 statistics: $\boldsymbol{p}+\boldsymbol{p}$
- $1<T_{R}<7 \mathrm{MeV}$
- Comparison of inclusive and clean bunches
- Beam intensity: normalized number of events

- First measurement of longitudinal bunch profile
- No significant longitudinal polarization profile has been found.

Longitudinal Bunch Profile: $p+A u$

- Full run 15 statistics: $\boldsymbol{p}+\boldsymbol{A} \boldsymbol{u}$
- $1<T_{R}<7 \mathrm{MeV}$
- Comparison of inclusive and clean bunches
- Beam intensity: normalized number of events

- No significant effect from colliding bunches can be seen.

Final Beam Polarizations

Atomic hydrogen target polarization 96\%
H_{2} content 3\% (mass)

Ratio of target/beam asymmetries
$1<E_{\text {recoil }}<7 \mathrm{MeV}$ (six bins)
Fit to constant

fill

\downarrow
use fixed A_{N} for $p+p$
use fill by fill ratio for $p+A$

Luminosity Weighted Polarization

Experiments

HJET Polarimeter

Carbon Polarimeter
beam width

$$
P=P_{\text {swax }} \cdot\left(\frac{I}{I_{\max }}\right)^{R}
$$

$P=\frac{\int P(x, y, t) \cdot I(x, y, t) d x d y d t}{\int I(x, y, t) d x d y d t}$

Polarization Decay \& Profile

- Polarimetry at RHIC
- Essential input for experiments
- Fast feedback during collider operation

Fast polarization measurement with Carbon targets

- Polarization decay and transverse profile

Absolute normalization with polarized hydrogen jet target

- Analyzing power with new detectors in 2015 \rightarrow improved precision and systematic studies
- New asymmetries from elastic proton-heavy-ion scattering
- Longitudinal polarization profile
- Final beam polarizations are fully background corrected

Elastic Proton-Proton Scattering

$\varphi(s, t)=\left\langle\lambda_{C} \lambda_{D}\right| \varphi\left|\lambda_{A} \lambda_{B}\right\rangle$
$\varphi_{1}(s, t)=\left\langle+\frac{1}{2}+\frac{1}{2}\right| \varphi\left|+\frac{1}{2}+\frac{1}{2}\right\rangle$
$\varphi_{2}(s, t)=\left\langle+\frac{1}{2}+\frac{1}{2}\right| \varphi\left|-\frac{1}{2}-\frac{1}{2}\right\rangle$
$\varphi_{3}(s, t)=\left\langle+\frac{1}{2}-\frac{1}{2}\right| \varphi\left|+\frac{1}{2}-\frac{1}{2}\right\rangle$
$\varphi_{4}(s, t)=\left\langle+\frac{1}{2}-\frac{1}{2}\right| \varphi\left|-\frac{1}{2}+\frac{1}{2}\right\rangle$
$\varphi_{5}(s, t)=\left\langle+\frac{1}{2}+\frac{1}{2}\right| \varphi\left|+\frac{1}{2}-\frac{1}{2}\right\rangle$
$A_{N} \frac{d s}{d t}=-\frac{4 \pi}{s^{2}} \operatorname{Im}\left[\varphi_{5}^{e m *}(s, t) \varphi_{+}^{h a d}(s, t)+\varphi_{5}^{h a d *}(s, t) \varphi_{+}^{e m}(s, t)\right]$
Phys. Rev. D 79, 094014 (2009)

First data from 2004 (100 GeV beam)
no-flip amplitude: $\varphi_{+}(s, t)=\frac{1}{2}\left[\varphi_{1}(s, t)+\varphi_{3}(s, t)\right]$
Transverse single-spin asymmetries are driven by an interference of amplitudes and can be compared to Regge theory.

- Reconstruction
- Energy calibration
- Time of flight adjustment
- Geometry alignment
- Pedestal noise QA
- Signal selection
- Remove punch through hits
- Missing mass $\left|M_{\text {miss }}-M_{p}\right|<50 \mathrm{MeV} / c^{2}$
- Time of flight $|\Delta t|<5 \mathrm{~ns}$
- Asymmetry calculation
- Inclusive and signal bunches

$$
\begin{aligned}
\epsilon_{S} & =\frac{\epsilon_{I}-r \epsilon_{B}}{1-r} \\
r & =\frac{B}{S+B}
\end{aligned}
$$

- Beam polarization calculation
- Asymmetry ratio $1<E_{\text {recoil }}<7 \mathrm{MeV}$

Energy Calibration

Calibrations are done every few days:

- Gain
- Entrance window (dead layer)

Two different α-sources

$$
\begin{aligned}
E_{\alpha}(G d) & =3.183 \mathrm{MeV} \\
E_{\alpha}(A m) & =5.486 \mathrm{MeV}
\end{aligned}
$$

Resolution of peak finding is within 1 ADC count

Stopping power for protons and α-particles from NIST database:

$$
\begin{gathered}
\Delta E_{\alpha(A m)}=0.72 \cdot \Delta E_{\alpha(G d)} \\
\Delta E_{P}=0.44 \cdot \Delta E_{\alpha(G d)} \cdot E[\mathrm{MeV}]^{-0.64}
\end{gathered}
$$

Kinematics

12 strips per detector
Removed peak in prompt hits at low ADC/TDC region

Using elastic p-recoil signature for time-of-flight offset determination

- Slow drift with time (detector/read-out)
- Big jumps when changing the DAQ system

Stopped Recoil Protons

Normalized to $A D C_{\text {max }}$

Slope $\delta_{A D C}$ calculated in six TDC bins around $1 / 2 A D C_{\text {max }}$

Slope of rise in waveform can be used to identify punch-through particles

Normalized waveform rise ($4.5<E<5.5 \mathrm{MeV}$) in each detector Independent of DAQ system (CAMAC/VME) Remove punch-through particles:

$$
\left(\delta_{\mathrm{ADC}}<-0.5\right) \wedge\left(\delta_{A D C}<8.5-1.5 * T_{k i n}\right)
$$

$\mathrm{E}<2.0 \mathrm{MeV}$

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<\mathrm{E}<6.0 \mathrm{MeV}$

$2.0<E<3.0 \mathrm{MeV}$

$4.0<E<5.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

$4.0<\mathrm{E}<5.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

$\mathrm{E}<2.0 \mathrm{MeV}$

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<E<6.0 \mathrm{MeV}$

$2.0<\mathrm{E}<3.0 \mathrm{MeV}$

$4.0<E<5.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<E<6.0 \mathrm{MeV}$
$+$

$4.0<E<5.0 \mathrm{MeV}$
$E>6.0 \mathrm{MeV}$

$\mathrm{E}<2.0 \mathrm{MeV}$

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<E<6.0 \mathrm{MeV}$

$2.0<\mathrm{E}<3.0 \mathrm{MeV}$

$4.0<E<5.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

$\mathrm{E}<2.0 \mathrm{MeV}$

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<E<6.0 \mathrm{MeV}$

$4.0<\mathrm{E}<5.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

Background Normalization (18

$3.0<\mathrm{E}<4.0 \mathrm{MeV}$

$5.0<\mathrm{E}<6.0 \mathrm{MeV}$

$E>6.0 \mathrm{MeV}$

Background Fraction $(|\Delta t|<5 \mathrm{~ns})$

Beam Polarizations

Online results from 2015, no background correction included

A_{N} in Elastic $\vec{p}+p$ Scattering

Noise threshold cut: 0.20 for $p+p, 0.15$ for $p+A$
p+A may still have some issues with high background fractions and changing beam conditions

Summary p+Al

Beam polarizations

Full run 15 statistics, $\mathrm{p}+\mathrm{Al}$
Comparison of inclusive and clean bunches

Pedestal Noise

solid/dashed: $P_{\text {beam }}^{\uparrow} / P_{\text {beam }}^{\downarrow}$

The noise is mainly on one side of the detector (outside).
It changes the waveform quality (slope) for low energies and leads to asymmetric loss of events.

$$
\left\langle r m s_{p e d}^{\uparrow}\right\rangle-\left\langle r m s_{p e d}^{\downarrow}\right\rangle
$$

(*) can use a fit for VME data, but resolution of CAMAC is too small

Polarization Decay \& Profile

凹

