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Key approximations to get TMD factorization

Collinear quark and antiquark in:

PB

PA

kB

kA

H H

• Light-front coordinates: kA = (xAP
+
A , k

−
A,kAT), kB = (k+

B, xBP
−
B ,kB T).

• In H, replace kA and kB by on-shell values

• In kinematics, replace q by (xAP
+
A , xBP

−
B ,kAT + kB T).

Hence

• Integrate k−A within A, etc =⇒ usual definition of TMD pdfs.

• k−A = O(q2
T/q

+), etc.

• So approximation gets bad when qT increases to roughly order Q and up.
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Some other graphical structures are treated similarly
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Key approximation to get collinear factorization for large qT
When qT of order Q, generate qT by hard scattering:

PB

PA

kB

kA

• In hard scattering: neglect both virtuality and transverse momentum of incoming
partons.

• Leads to use of collinear parton densities f(x; . . . ).

• Breaks down once qT is comparable to typical parton kT.
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And key approximation for collinear factorization also applies to
cross section integrated over qT

• In

PB

PA

kB

kA

H H

integral over qT gives independent integrals over kAT & kB T.

• Collinear approximation replaces qT by zero. Shift leaves integrated cross section
unchanged.
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Error sizes
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CSS’s W + Y method to combine TMD & collinear factorizations

dσ

d4q
= W + Y + error

with TMD term

W = σ0H(Q/µ)

∫
d2bT e

iqT·bTf̃(xA, bT;µ,Q)f̃(xB, bT;µ,Q)

and collinear correction term

Y = collinear approx. to

(
dσ

d4q
−W

)
Errors (to which are to be added truncation errors!):

W =
dσ

d4q

{
1 +O

[(
Λ

Q

)a]
+O

[(
qT

Q

)a]}
when qT . Q

Y =

(
dσ

d4q
−W

){
1 +O

[(
Λ

qT

)a]
+O

[(
Λ

Q

)a]}
when Λ . qT . Q

Hence

error =
dσ

d4q
−W − Y =

dσ

d4q
×O

[(
Λ

Q

)a]
when Λ . qT . Q
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What is problematic with the original W + Y formulation?
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• When qT is above some small fraction of Q: W deviates a lot from dσ/d4q.

• Then it becomes negative, and asymptotes to 1/q2
T times logarithms.

• Hence at large enough qT, W + Y is a difference of larger terms: Truncation errors
etc are magnified.

•
∫

d2qTW = 0 since W̃ (bT = 0) = 0.

But in dσ/d4q = W + Y + error:

–
∫

d2qT dσ/d4q given by collinear factorization starting at LO (i.e., α0
s)

– Y is used with collinear factorization starting at NLO (i.e., α1
s)

• At small qT, Y is bad approximation to dσ/d4q −W
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Our new proposal

Modify W to

WNew = Ξ

(
qT

Q

)∫
d2bT

(2π)2e
iqT·bTW̃ (bc(bT), Q)

with small bT cutoff, to avoid problems in
∫

d2qTWNew:

bc(bT) =

√
b2T + const/Q2

and with large qT cutoff, sharp or smooth:

Ξ

(
qT

Q

)
= exp

[
−
(

qT
const.Q

)const.
]

Modify Y to

YNew = X(qT)× collinear approx. to

(
dσ

d4q
−WNew

)
with small qT cutoff:

X(qT/λ) = 1− exp
{
−(qT/const.)const.

}
(1)
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Conclusions

• Modified W + Y so that

– WNew is
∫

d2bT e
iqT·bTW̃ (bc(bT); . . . ), with a bc(0) of order 1/Q

– YNew has cutoff at low qT.

• Further improvements possible. (See appendix for constraints.)

• Generally: Need to “look under hood”:

– What are the nature of the approximations giving factorization (TMD and
collinear)?

– How much do they fail, with proper account of non-perturbative properties?

• Importance for spin physics: Improved behavior at moderate Q.

• In SIDIS, for determining what is large and small transverse momentum relative to
Q, is the appropriate variable qT or PT? (This concerns quark transverse
momentum relative to hadron or quark relative to hadron.) Was that the right
question?

• Need hard scattering coefficient for Y for SIDIS at O(α2
s).

Sep. 26, 2016 10/(10+iii)



APPENDIX
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Complications at small bT
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W =
∑
j

σ0H

∫
d2bT

(2π)2e
iqT·bT (C ⊗ f)A (C ⊗ f)B × e

−gK(bT) ln Q
2

Q
2
0

−gj/A(xA,bT)−ḡ/B(xB,bT)

× exp

{
−
∫ µQ

µb∗

dµ

µ

[
ln

Q2

(µ′)2γK(αs(µ))− 2γj(αs(µ))

]
+ K̃(b∗;µb∗) ln

Q2

µ2
b∗

}

Y = collinear fixed-order approx. to

(
dσ

d4q
−W

)
• W = 0 at bT = 0, so

∫
d2qTW = 0.

• W good approximation to dσ/d4q at small qT, but is negative at large qT.

• Small-bT singularity not given by fixed-order P.T.
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Constraints on improved W + Y formulation

Given that

• WNew is given by (modified) TMD/resummed formula.

• YNew is given by fixed order collinear factorization

Then for WNew + YNew, we require:

• WNew uses normal operator definitions of TMD densities (for which we know
evolution equations).

(Next items refer to errors beyond non-logarithmic truncation errors.)

• Error relative to dσ/d4q is suppressed by a power of Q over whole range of qT.

• The power suppression also applies to the cross section integrated over qT.

•
∫

d2qTWNew gives LO collinear factorization plus well-behaved NLO terms (and
beyond).
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