Lattice Nucleon
GPDs & Form Factors

Martha Constantinou

Temple University

22nd International Spin Symposium
University of Illinois, September 26th, 2016
IN THIS TALK

A Motivation

B Introduction

C Nucleon GPDs & FFs
- Axial Charge & FFs
- Quark Momentum Fraction
- Gluon Momentum fraction
- Proton Spin

D Summary
MOTIVATION
Lattice QCD meets Nature

Rich experimental activities in major facilities
Electron Ion Collider
The Next QCD Frontier

“Understanding the glue that binds us all”

[A. Accardi et al., EIC white paper, arXiv:1212.1701]
Electron Ion Collider
The Next QCD Frontier

“Understanding the glue that binds us all”
[A. Accardi et al., EIC white paper, arXiv:1212.1701]

Lattice QCD necessary for EIC measurements

EIC program

- structure & interactions of gluon-dominated matter
- Measurements will probe the region of sea quarks
- parton imaging with high statistics and with polarization in a wide range of small to moderate-x

Lattice QCD

- Study of Gluon Observables is now feasible
- Simulations of the full theory with physical values of the m_q
 - Unpolarized, Polarized and Transversity Distributions can be computed from first principles
What does the Lattice Community try to achieve?

★ Make contact with well-known experimental data
★ Provide input for quantities not easily accessible in experiments
★ Guide New Physics searches
INTRODUCTION
Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice
 ● Quark fields on lattice points
 ● Gluons on links
Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice
 - Quark fields on lattice points
 - Gluons on links

Why Lattice QCD?

★ Only non-perturbative approach to solve *ab initio* QCD
 (starting from original Lagrangian)
Lattice formulation of QCD

★ Space-time discretization on a finite-sized 4-D lattice
 - Quark fields on lattice points
 - Gluons on links

Why Lattice QCD?

★ Only non-perturbative approach to solve ab initio QCD (starting from original Lagrangian)

Technical Aspects

★ Parameters (define cost of simulations):
 - quark masses (aim at physical values)
 - lattice spacing (ideally fine lattices)
 - lattice size (need large volumes)

★ Discretization not unique:
 - Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall
Advances in Lattice QCD

Huge computational power needed & Algorithmic improvements

Cost of 1000 configurations at physical m_q is currently $\mathcal{O}(10)$ TFlops \times year

$32^3 \times 64$

5000 configs

$L=2.1\text{fm}$

1000 configs
Nucleon on the Lattice in a nutshell

Topologies:

1. Connected
2. Disconnected Quark loop
3. Disconnected Gluon loop
Nucleon on the Lattice in a nutshell

Topologies:

- Connected
- Disconnected Quark loop
- Disconnected Gluon loop

Computation of 2pt- and 3pt-functions:

2pt: \(G(\vec{q}, t) = \sum_{\vec{x}_f} e^{-i\vec{x}_f \cdot \vec{q}} \Gamma_0^{\beta\alpha} \langle J_\alpha(\vec{x}_f, t_f) J_\beta(0) \rangle \)

3pt: \(G_O(\Gamma^\kappa, \vec{q}, t) = \sum_{\vec{x}_f, \vec{x}} e^{i\vec{x} \cdot \vec{q}} e^{-i\vec{x}_f \cdot \vec{p}'} \Gamma^{\kappa\beta\alpha} \langle J_\alpha(\vec{x}_f, t_f) O(\vec{x}, t) J_\beta(0) \rangle \)

\[\Gamma^0 \equiv \frac{1}{4}(1 + \gamma_0) \]
\[\Gamma^2 \equiv \Gamma^0 \cdot \gamma_5 \cdot \gamma_i \]
and other variations
Construction of optimized ratio:

\[R_{\mu}^{\Omega}(\Gamma, \vec{q}, t) = \frac{G_{\Omega}(\Gamma, \vec{q}, t)}{G(\vec{0}, t_f)} \times \sqrt{\frac{G(-\vec{q}, t_f-t)G(\vec{0}, t)G(\vec{0}, t_f)}{G(\vec{0}, t_f-t)G(-\vec{q}, t)G(-\vec{q}, t_f)}} \]

Plateau Method:

\[R_{\Omega}(\Gamma, \vec{q}, t) \xrightarrow{t \to \infty} t_f \xrightarrow{t \to t_i} \Pi^{\mu}(\Gamma, \vec{q}) \]

Summation Method:

\[\sum_{t} R_{\Omega}(\Gamma, \vec{q}, t) \xrightarrow{t_f \to \infty} C + \Pi^{\mu}(\Gamma, \vec{q}) \times t_f \]
Construction of optimized ratio:

\[R^\mu_\mathcal{O}(\Gamma, \vec{q}, t) = \frac{G_\mathcal{O}(\Gamma, \vec{q}, t)}{G(\vec{0}, t_f)} \times \sqrt{\frac{G(-\vec{q}, t_f - t)G(\vec{0}, t)G(\vec{0}, t_f)}{G(\vec{0}, t_f - t)G(-\vec{q}, t)G(-\vec{q}, t_f)}} \]

Plateau Method:

\[R_\mathcal{O}(\Gamma, \vec{q}, t) \xrightarrow{t \to \infty} \Pi^\mu(\Gamma, \vec{q}) \]

Summation Method:

\[\sum_t R_\mathcal{O}(\Gamma, \vec{q}, t) \xrightarrow{t_f \to \infty} \mathcal{C} + \Pi^\mu(\Gamma, \vec{q}) \times t_f \]

Renormalization:

connection to experiments

\[\Pi^R(\Gamma, \vec{q}) = Z_\mathcal{O} \Pi(\Gamma, \vec{q}) \]

Extraction of form factors e.g. Axial current:

\[A_\mu^3 \equiv \bar{\psi} \gamma_\mu \gamma_5 \frac{\tau^3}{2} \psi \Rightarrow \bar{u}_N(p') \left[G_A(q^2) \gamma_\mu \gamma_5 + G_P(q^2) \frac{q_\mu \gamma_5}{2m_N} \right] u_N(p) \]
C

Nucleon FFs & GPDs

Axial Form Factor
Why is this quantity interesting?

Axial Charge

- governs the rate of β-decay
- Well-determined experimentally!
- related to the intrinsic spin $\Delta \Sigma = g_A$

Axial Form Factors

- Relevant for experiments searching neutrino oscillation

Not well control systematics (due to model-dependence)
Axial Charge

Determined directly from lattice data (no fit necessary)

Results at the physical point (disconnected diagram):

\[g_A^{u+d}, g_A^s \] (ETMC, 2016)
Axial Charge

Determined directly from lattice data (no fit necessary)

Results at the physical point (disconnected diagram):
\[g_{u+d}^A, g_{s}^A \] (ETMC, 2016)

Reliable results:

- ★ Continuum extrapolation
- ★ Infinite Volume extrapolation
- ★ Excited states

Further study for larger \(T_{\text{sink}} \)
Systematic Uncertainties (selected)

Excited States Contamination

- \[g_A \text{ Variational Comparison} \]

- [J. Dragos et al. (QCDSF/CSSM), arXiv:1606.03195]

- [C. Alexandrou et al. (ETMC), Lattice 2016]

Proper analysis for suppression of excited states

Renormalization

- \[Z_A(\text{unsubtracted}) \]

- \[Z_A(\text{O}(a^2 m_f)\text{-subtracted}) \]

- [M. Constantinou et al. (ETMC), arXiv:1509.00213]

- [Bhattacharya et al. (PNDME), arXiv:1606.07049]

Sophisticated methods to eliminate lattice artifacts
Axial Form Factor
Axial Form Factor

Extraction of axial mass:

\[G_A(Q^2) = \frac{g_A}{\left(1 + \frac{Q^2}{M_A^2}\right)^2} \text{ dipole fit} \]

\[G_A(Q^2) = \sum_{n=0}^{\infty} a_n z(Q^2)^n \text{ z-expansion} \]

Exp. data differ:

- \(M_A = 1.03(2) \text{ GeV} \) (\(\nu \)-scattering, prior-1990)
- \(M_A = 1.35(17) \text{ GeV} \) (Lower energy exp., 2010)
- \(M_A = 1.01(24) \text{ GeV} \) (\(z \)-expansion, 2016)

Lattice data:

- \(M_A = 1.24(8) \text{ GeV} \) (ETMC, \(m_p = 132 \text{ MeV} \))
- \(M_A = 1.02(4) \text{ GeV} \) (PNDME, \(m_p = 130 \text{ MeV} \))
- \(M_A = 1.24(14) \text{ GeV} \) (RBC/UKQCD, \(m_p = 172 \text{ MeV} \))

Effort is needed for estimates with reliable error budgets
C
Nucleon FFs & GPDs
2
Unpolarized GPDs
Unpolarized GPDs

★ Distribution of nucleon momentum among its constituents

★ First non-trivial moment
 (moment fixed by the number of valence quarks)

★ Measured in DIS experiments
 Value uses input from phenomenological models

★ Benchmark quantity for lattice QCD calculations

Quark Momentum Fraction

\[
\langle N(p', s') | O_{DV}^{\mu \nu} | N(p, s) \rangle = \bar{u}_N(p', s') \left[A_{20}(q^2) \gamma^{\mu P^\nu} \right. \\
+ B_{20}(q^2) \frac{i \sigma^{\mu \alpha q_\alpha P^\nu}}{2m} \\
+ C_{20}(q^2) \frac{1}{m} q^{\mu q^\nu} \left. \right] u_N(p, s)
\]

Isovector Combination

Excited States must be assessed

\[
m_\pi = 130 \text{ MeV}
\]

\[
m_\pi = 340 \text{ MeV}
\]

Excited States must be assessed

[C. Alexandrou et al. (ETMC), Lattice 2016]

[T. Rae et al. (Mainz Group), 2014]
Quark Momentum Fraction
(Disconnected: light quarks)

[C. Alexandrou et al. (ETMC), Lattice 2016]

Discrete contributions not negligible (@ physical point)!

\[\langle x \rangle_{u+d}^{DI} = 0.21(10) \]

mixing with gluon operator

Directly at the physical point
Quark Momentum Fraction
(Disconnected: strange quark)

[C. Alexandrou et al. (ETMC), Lattice 2016]

\[\langle x \rangle^{DI}_s = 0.08(5) \]

[M. Sun et al. (χQCD), arXiv:1502.05482]

\[\langle x \rangle_{u/d} = 0.0285(57) \]
\[\langle x \rangle_s = 0.0195(26) \]

chiral extrapolation, bare results

\textbf{Ratio} \(\langle x \rangle_s / \langle x \rangle_{u/d} \) consistent between lattice data and exp.

\(\langle x \rangle_s / \langle x \rangle_{u/d} = 0.76(30) \) (ETMC)
\(\langle x \rangle_s / \langle x \rangle_{u/d} = 0.78(03) \) (χQCD)

\textbf{Small } x \textbf{ region:}
• dominated by disc. sea
• Ratio \(\sim \) flat

Milestone calculations in nucleon structure!
C

Nucleon FFs & GPDs

3

Gluon Momentum Fraction
Gluon Momentum Fraction

Lattice Calculations

Direct computation:

\[O_{\mu\nu}^g = -\text{Tr} \left[G_{\mu\rho} G_{\nu\rho} \right] \]

\[\langle N(0) | O_{44} - \frac{1}{3} \sum_{j=1}^3 O_{jj} | N(0) \rangle = m_N \langle x \rangle_g \]

Decomposition of Energy-momentum Tensor

\[J^i_{q,g} = \frac{1}{2} \epsilon^{ijk} \int d^3 x \left(\mathcal{T}^{0k}_{q,g} x^j - \mathcal{T}^{0j}_{q,g} x^k \right) \]

\[\mathcal{T}^{(E)}_{\{4i\}q} = -\frac{i}{4} \sum_f \overline{\psi}_f \left[\gamma_4 \overrightarrow{D}_i + \gamma_i \overrightarrow{D}_4 - \gamma_4 \overleftarrow{D}_i - \gamma_i \overleftarrow{D}_4 \right] \psi_f \]

\[\mathcal{T}^{(E)}_{\{4i\}g} = -\frac{i}{2} \sum_{k=1}^3 2\text{Tr} \left[G_{4k}G_k + G_{ik}G_{k4} \right] \]
Lattice Results

Quenched

Feynman-Hellmann

\[\langle x \rangle_g = 0.43(7)(5) \]

Energy-Momentum tensor

\[\langle x \rangle_g = 0.313(56) \]

Dynamical

Smearing: improves signal

\[N_f = 2 \text{ TM fermions, } m_\pi = 130 \text{ MeV} \]

Renormalized results require work!
Challenges

★ Disconnected diagram
 • Small signal-to-noise ratio • Requires special techniques

★ Renormalization
 • Mixing with operator for $\langle x \rangle_{u+d}$
 Unavoidable
 • Mixing with other Operators
 Gauge Invariant, BRS transformation, vanish by e.o.m.
 Vanish in physical matrix elements
Challenges

Disconnected diagram
- Small signal-to-noise ratio
- Requires special techniques

Renormalization
- Mixing with operator for $\langle x \rangle_{u+d}$
- Unavoidable
- Mixing with other Operators
 - Gauge Invariant, BRS transformation, vanish by e.o.m.
 - Vanish in physical matrix elements

2×2 mixing matrix

\[
\begin{pmatrix}
\langle x \rangle_g^{\overline{MS}}(\mu) \\
\sum_q \langle x \rangle_q^{\overline{MS}}(\mu)
\end{pmatrix} =
\begin{pmatrix}
Z_{gg}^{MS}(\mu) & Z_{gq}^{MS}(\mu) \\
Z_{qg}^{MS}(\mu) & Z_{qq}^{MS}(\mu)
\end{pmatrix}
\begin{pmatrix}
\langle x \rangle_g \\
\sum_q \langle x \rangle_q
\end{pmatrix}
\]

\[\langle x \rangle_g^R = Z_{gg} \langle x \rangle_g^B + Z_{gq} \sum_q \langle x \rangle_q^B\]
\[\sum_q \langle x \rangle_q^R = Z_{qq} \sum_q \langle x \rangle_q^B + Z_{qg} \langle x \rangle_g^B\]

Quenched case: $Z_{qq} = 1 - Z_{qq}$, $Z_{gq} = 1 - Z_{qq}$
Challenges

★ Disconnected diagram
- Small signal-to-noise ratio
- Requires special techniques

★ Renormalization
- Mixing with operator for $\langle x \rangle_{u+d}$
 Unavoidable
- Mixing with other Operators Gauge Invariant, BRS transformation, vanish by e.o.m.
 Vanish in physical matrix elements

2 x 2 mixing matrix

\[
\begin{pmatrix}
\langle x \rangle_{g}^{MS}(\mu) \\
\sum_q \langle x \rangle_{q}^{MS}(\mu)
\end{pmatrix}
=
\begin{pmatrix}
Z_{gg}^{MS}(\mu) & Z_{gq}^{MS}(\mu) \\
Z_{qg}^{MS}(\mu) & Z_{qq}^{MS}(\mu)
\end{pmatrix}
\begin{pmatrix}
\langle x \rangle_{g} \\
\sum_q \langle x \rangle_{q}
\end{pmatrix}
\]

★ Quenched case: $Z_{gq} = 1 - Z_{qq}, Z_{gq} = 1 - Z_{qq}$

MUST compute mixing coefficients and subtract contributions

Perturbation Theory
Perturbative computation

\[\times Z_{qq} : \quad \Lambda_{qq} = \langle q | O_q | q \rangle \]

\[\times Z_{qg} : \quad \Lambda_{qg} = \langle q | O_g | g \rangle \]

\[\bullet Z_{gg} : \quad \Lambda_{gg} = \langle g | O_g | g \rangle \]
Elimination of mixing

Application for TM fermions

\[\langle x \rangle_{u+d+s}^R = Z_{qq} \langle x \rangle_{u+d+s} + Z_{qg} \langle x \rangle_g = 0.748(105) \]

\[\langle x \rangle_g^R = Z_{gg} \langle x \rangle_g + Z_{gq} \langle x \rangle_{u+d+s} = 0.320(24) \]

Momentum Conservation

\[\sum_{q=u,d,s} \langle x \rangle_q^R + \langle x \rangle_G^R = \langle x \rangle_{u+d}^{CI,R} + \langle x \rangle_{u+d+s}^{DI,R} + \langle x \rangle_G^R = 1.068(108) \]

Energy-momentum Tensor

Y.-B. Yang et al., (χQCD), 2016

\(m_{\pi,v} = 400 \text{ MeV}, \ m_{\pi,s} = 170 \text{ MeV} \)

Preliminary

Large gluon contribution

[27]
C
Nucleon FFs & GPDs
4
Proton Spin
Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

\[
\frac{1}{2} = \sum_q J^q + J^G = \sum_q \left(L^q + \frac{1}{2} \Delta \Sigma^q \right) + J^G
\]

- \(L_q \): Quark orbital angular momentum
- \(\Delta \Sigma_q \): Intrinsic spin
- \(J^G \): Gluon part
Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

\[\frac{1}{2} = \sum_q J^q + J^G = \sum_q \left(L^q + \frac{1}{2} \Delta \Sigma^q \right) + J^G \]

- \(L^q \): Quark orbital angular momentum
- \(\Delta \Sigma^q \): intrinsic spin
- \(J^G \): Gluon part

Extraction from LQCD:

\[J^q = \frac{1}{2} (A_{20}^q + B_{20}^q) \, , \, \, L^q = J^q - \Sigma^q \, , \, \Sigma^q = g_A^q \]

★ Individual quark contributions: disconnected insertion contributes
Quark Contributions to Spin

Valence Quarks Contributions

Total Spin

Intrinsic Spin

Valence Quark carry \sim half of the proton spin

Where does the rest of the spin come from?

- Sea Quark Contributions
- Gluon Contributions
Quark Contributions to Spin

Valence + Sea Quarks Contributions

Total Spin

Intrinsic Spin

★ Sea Quark contribution bring data in agreement with experiment!
Energy-Momentum Tensor

Glue Spin

- glue, 0.37(7)
- s, 0.02(2)
- d, -0.03(3)
- u, 0.64(6)

Angular Momentum

Preliminary

HYP smearing
LML: ($\mu^2 = 10$ GeV2)
$S_G = 0.287(55)(16)$

1-loop pert. renormalization & normalization of gluon self-energy

Talk by Yi-Bo Yang, Mon @ 12:20pm

[Y.-B. Yang et al. (χ QCD), arXiv:1609.05937]
SUMMARY

Lattice QCD milestones:

★ Simulations of the physical world
★ Large effort on addressing the systematics
★ Calculation of more involved quantities
★ New approaches to address parton distributions e.g. quasi-PDFs (Ji’s definition)
★ Predictions related to Physics BSM
Join us!

Joint POETIC7 & CTEQ Meeting

7th International Conference on Physics Opportunities @ Electron-Ion-Collider

Temple University, November 14-18, 2016

THANK YOU