Lattice Nucleon GPDs \& Form Factors

Martha Constantinou

Temple University

$22^{\text {nd }}$ International Spin Symposium University of Illinois, September $\mathbf{2 6}^{\text {th }}, 2016$

IN THIS TALK

A Motivation

B Introduction
C Nucleon GPDs \& FFs

- Axial Charge \& FFs
- Quark Momentum Fraction
- Gluon Momentum fraction

- Proton Spin

D Summary

A

MOTIVATION

Lattice QCD meets Nature

JPARC

RHIC (BNL)

FERMILAB

Rich experimental activities in major facilities

COMPASS

MAMI

Electron Ion Collider

The Next QCD Frontier

"Understanding the glue that binds us all"

Electron Ion Collider

The Next QCD Frontier

"Understanding the glue that binds us all"
[A. Accardi et al., EIC white paper, arXiv:1212.1701]

Lattice QCD necessary for EIC measurements

EIC program

structure \& interactions of gluon-dominated matter

Measurements will probe the region of sea quarks parton imaging with high statistics and with polarization in a wide range of small to moderate-x

Lattice QCD
Study of Gluon Observables is now feasible

Simulations of the full theory with physical values of the m_{q}

Unpolarized, Polarized and Transversity Distributions can be computed from first principles

What does the Lattice Community try to achieve?

\star Make contact with well-known experimental data
\star Provide input for quantities not easily accessible in experiments
\star Guide New Physics searches

B

INTRODUCTION

Lattice formulation of QCD

* Space-time discretization on a finite-sized 4-D lattice
- Quark fields on lattice points
- Gluons on links

Lattice formulation of QCD

* Space-time discretization on a finite-sized 4-D lattice
- Quark fields on lattice points
- Gluons on links

Why Lattice QCD ?

\star Only non-perturbative approach to solve ab initio QCD (starting from original Lagrangian)

Lattice formulation of QCD

\star Space-time discretization on a finite-sized 4-D lattice

- Quark fields on lattice points
- Gluons on links

Why Lattice QCD ?

* Only non-perturbative approach to solve ab initio QCD (starting from original Lagrangian)

Technical Aspects

* Parameters (define cost of simulations):
- quark masses (aim at physical values)
- lattice spacing (ideally fine lattices)
- lattice size (need large volumes)
\star Discretization not unique:
- Wilson, Clover, Twisted Mass, Staggered, Overlap, Domain Wall

Advances in Lattice QCD

Huge computational power needed \& Algorithmic improvements

$32^{3} \times 64$
5000 configs

$$
\begin{gathered}
L=2.1 \mathrm{fm} \\
1000 \text { configs }
\end{gathered}
$$

Cost of 1000 configurations at physical m_{q} is currently $\mathcal{O}(10)$ TFlops \times year

Nucleon on the Lattice in a nutshell

Topologies:

Connected

Disconnected Quark loop

Disconnected Gluon loop

Nucleon on the Lattice in a nutshell

Topologies:

Connected

Disconnected Quark loop

Disconnected Gluon loop

Computation of 2pt- and 3pt-functions:

$$
\begin{array}{r}
2 \mathrm{pt}: \quad G(\vec{q}, t)=\sum_{\vec{x}_{f}} e^{-i \vec{x}_{f} \cdot \vec{q}^{\prime}} \Gamma_{\beta \alpha}^{0}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \bar{J}_{\beta}(0)\right\rangle \\
3 \mathrm{pt}: \quad G_{\mathcal{O}}\left(\Gamma^{\kappa}, \vec{q}, t\right)=\sum_{\vec{x}_{f}, \vec{x}} e^{i \vec{x} \cdot \vec{q}} e^{-i \vec{x}_{f} \cdot \vec{p}^{\prime}} \Gamma_{\beta \alpha}^{\kappa}\left\langle J_{\alpha}\left(\vec{x}_{f}, t_{f}\right) \mathcal{O}(\vec{x}, t) \bar{J}_{\beta}(0)\right\rangle \\
\begin{array}{l}
\Gamma^{0} \equiv \frac{1}{4}\left(1+\gamma_{0}\right) \\
\Gamma^{2} \equiv \Gamma^{0} \cdot \gamma_{5} \cdot \gamma_{i} \\
\text { and other variations }
\end{array}
\end{array}
$$

Construction of optimized ratio:

$$
R_{\mathcal{O}}^{\mu}(\Gamma, \vec{q}, t)=\frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \times \sqrt{\frac{G\left(-\vec{q}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(-\vec{q}, t) G\left(-\vec{q}, t_{f}\right)}}
$$

Plateau Method:
$R_{\mathcal{O}}(\Gamma, \vec{q}, t) \underset{\substack{t_{f}-\overrightarrow{t \rightarrow \infty} \\ t-t_{i} \rightarrow \infty}}{\overrightarrow{ }} \Pi^{\mu}(\Gamma, \vec{q})$
Summation Method:
$\sum_{t} R_{\mathcal{O}}(\Gamma, \vec{q}, t)_{t_{f}} \rightarrow \infty$

Construction of optimized ratio:

$R_{\mathcal{O}}^{\mu}(\Gamma, \vec{q}, t)=\frac{G_{\mathcal{O}}(\Gamma, \vec{q}, t)}{G\left(\overrightarrow{0}, t_{f}\right)} \times \sqrt{\frac{G\left(-\vec{q}, t_{f}-t\right) G(\overrightarrow{0}, t) G\left(\overrightarrow{0}, t_{f}\right)}{G\left(\overrightarrow{0}, t_{f}-t\right) G(-\vec{q}, t) G\left(-\vec{q}, t_{f}\right)}}$
Plateau Method:
$R_{\mathcal{O}}(\Gamma, \vec{q}, t) \underset{\substack{t_{f}-\vec{t} \rightarrow \infty \\ t-t_{i} \rightarrow \infty}}{\rightarrow} \Pi^{\mu}(\Gamma, \vec{q})$
Summation Method:

$$
\sum_{t} R_{\mathcal{O}}(\Gamma, \vec{q}, t){ }_{t_{f}} \rightarrow \infty
$$

Renormalization:

connection to experiments

$$
\Pi^{R}(\Gamma, \vec{q})=Z_{\mathcal{O}} \Pi(\Gamma, \vec{q})
$$

Extraction of form factors e.g. Axial current:

$$
A_{\mu}^{3} \equiv \bar{\psi} \gamma_{\mu} \gamma_{5} \frac{\tau^{3}}{2} \psi \Rightarrow \bar{u}_{N}\left(p^{\prime}\right)\left[\mathrm{G}_{\mathrm{A}}\left(\mathrm{q}^{2}\right) \gamma_{\mu} \gamma_{5}+\mathrm{G}_{\mathrm{p}}\left(\mathrm{q}^{2}\right) \frac{q_{\mu} \gamma_{5}}{2 m_{N}}\right] u_{N}(p)
$$

C
 Nucleon FFs \& GPDs

1
Axial Form Factor

Why is this quantity interesting?

\longrightarrow Axial Charge

\star governs the rate of β-decay
\star Well-determined experimentally!
\star related to the intrinsic spin $\Delta \Sigma=g_{A}$
\longrightarrow Axial Form Factors

\star Relevant for experiments searching neutrino oscillation

[A. Aguilar-Arevalo et al. (MiniBooNE), arXiv:1002.2680]
\star Not well control systematics (due to model-dependence)

Axial Charge

Determined directly from lattice data (no fit necessary)

Results at the physical point (disconnected diagram):
$g_{A}^{u+d}, g_{A}^{s} \quad($ ETMC, 2016)

Axial Charge

Determined directly from lattice data (no fit necessary)

Results at the physical point (disconnected diagram):
g_{A}^{u+d}, g_{A}^{s} (ETMC, 2016)

Reliable results:

\star Continuum extrapolation
\star Infinite Volume extrapolation
\star Excited states
Further study for larger $T_{\text {sink }}$

Systematic Uncertainties (selected)

Excited States Contamination

[J. Dragos et al. (QCDSF/CSSM), arXiv:1606.03195]

[C. Alexandrou et al. (ETMC), Lattice 2016]
Proper analysis for suppression of excited states

Renormalization

[M. Constantinou et al. (ETMC), arXiv:1509.00213]

[Bhattacharya et al. (PNDME), arXiv:1606.07049]
Sophisticated methods to eliminate lattice artifacts

Axial Form Factor

Axial Form Factor

Extraction of axial mass:

$$
G_{A}\left(Q^{2}\right)=\frac{g_{A}}{\left(1+\frac{Q^{2}}{M_{A}^{2}}\right)^{2}} \text { dipole fit } \quad G_{A}\left(Q^{2}\right)=\sum_{n=0}^{\infty}=a_{n} z\left(Q^{2}\right)^{n} z \text {-expansion }
$$

Exp. data differ:

$$
\begin{aligned}
& M_{A}=1.03(2) \mathbf{G e V} \text { (} \nu \text {-scattering, prior-1990) } \\
& M_{A}=1.35(17) \mathrm{GeV} \text { (Lower energy exp., 2010) } \\
& M_{A}=1.01(24) \mathrm{GeV} \text { (} z \text {-expansion, 2016) } \\
& M_{A}=1.24 \text { (8) } \mathbf{G e V} \text { (ETMc, } m_{p}=132 \mathrm{MeV} \text {) } \\
& M_{A}=1.02(4) \mathrm{GeV} \text { (PNDME, } m_{p}=130 \mathrm{MeV} \text {) } \\
& M_{A}=1.24(14) \mathrm{GeV} \text { (RBC/UKaCD, } m_{p}=172 \mathrm{MeV} \text {) }
\end{aligned}
$$ Effort is needed for estimates with reliable error budgets

C
 Nucleon FFs \& GPDs

2

Unpolarized GPDs

Unpolarized GPDs

* Distribution of nucleon momentum among its constituents
\star First non-trivial moment
(moment fixed by the number of valence quarks)
\star Measured in DIS experiments
Value uses input from phenomenological models

[J. Blumlein et al., arXiv:hep-ph/0607200]
\star Benchmark quantity for lattice QCD calculations

Quark Momentum Fraction

$$
\begin{aligned}
\left\langle N\left(p^{\prime}, s^{\prime}\right)\right| \mathcal{O}_{\mathrm{DV}}^{\mu \nu}|N(p, s)\rangle=\bar{u}_{N}\left(p^{\prime}, s^{\prime}\right) & {\left[\mathbf{A}_{20}\left(\mathbf{q}^{2}\right) \gamma^{\{\mu} P^{\nu\}}\right.} \\
& +\mathbf{B}_{20}\left(\mathbf{q}^{2}\right) \frac{i \sigma\left\{\mu \alpha q_{\alpha} P^{\nu\}}\right.}{2 m} \\
& \left.+\mathbf{C}_{20}\left(\mathbf{q}^{2}\right) \frac{1}{m} q^{\{\mu} q^{\nu\}}\right] u_{N}(p, s)
\end{aligned}
$$

Isovector Combination

Excited States must be assessed

[C. Alexandrou et al. (ETMC), Lattice 2016] $m_{\pi}=340 \mathrm{MeV}$

Quark Momentum Fraction
 (Disconnected: light quarks)

[C. Alexandrou et al. (ETMC), Lattice 2016]

Directly at the physical point

[M. Sun et al. (χ QCD), arXiv:1502.05482]

chiral extrapolation, bare results

Disconnected contributions not negligible
(@ physical point)!
$\langle x\rangle_{u+d}^{D I}=0.21(10)$
mixing with gluon operator

Quark Momentum Fraction
 (Disconnected: strange quark)

C Nucleon FFs \& GPDs

 3
Gluon Momentum Fraction

Gluon Momentum Fraction

[A. Martin et al., arXiv:0901.0002]

Lattice Calculations

Direct computation:

$$
\mathcal{O}_{\mu \nu}^{g}=-\operatorname{Tr}\left[G_{\mu \rho} G_{\nu \rho}\right] \quad\langle N(0)| \mathcal{O}_{44}-\frac{1}{3} \sum_{j=1}^{3} \mathcal{O}_{j j}|N(0)\rangle=m_{N}\langle x\rangle_{g}
$$

Decomposition of Energy-momentum Tensor

$$
J_{q, g}^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x\left(\mathcal{T}_{q, g}^{0, k} x^{j}-\mathcal{T}_{q, g}^{0 j} x^{k}\right)
$$

$$
\tau_{\{4 i\} q}^{(E)}=-\frac{i}{4} \sum_{f} \overline{\bar{\psi}}_{f}\left[\gamma_{4} \vec{D}_{i}+\gamma_{i} \vec{D}_{4}-\gamma_{4} \overleftarrow{D}_{i}-\gamma_{i} \overleftarrow{D}_{4}\right] \psi_{f}
$$

$$
\mathcal{T}_{\{4 i\} g}^{(E)}=-\frac{i}{2} \sum_{k=1}^{3} 2 \operatorname{Tr}^{c}\left[G_{4 k} G_{k i}+G_{i k} G_{k 4}\right]
$$

Lattice Results

Quenched

[R. Horsley et al. (QCDSF), 2012, arXiv:1205.6410]

$$
N_{f}=0 \text { Clover, } m_{\pi}=314-555 \mathrm{MeV}
$$

$$
\langle x\rangle_{g}=0.43(7)(5)
$$

Dynamical

Energy-Momentum tensor

[M. Deka et al. (χ QCD), 2013, arXiv:1312.4816] $N_{f}=0$ Wilson, $m_{\pi}=478-650 \mathrm{MeV}$

$$
\langle x\rangle_{g}=0.313(56)
$$

[C. Alexandrou et al. (ETMC), 2016]
$N_{f}=2$ TM fermions, $m_{\pi}=130 \mathrm{MeV}$
Renormalized results require work!

Challenges

\star Disconnected diagram

- Small signal-to-noise ratio - Requires special techniques
\star Renormalization

- Mixing with operator for $\langle x\rangle_{u+d}$ Unavoidable
- Mixing with other Operators Gauge invariant, BRS transtormation, vanish by e.o.m. Vanish in physical matrix elements

Challenges

Disconnected diagram

- Small signal-to-noise ratio - Requires special techniques

\star Renormalization

- Mixing with operator for $\langle x\rangle_{u+d}$

Unavoidable

- Mixing with other Operators Gauge invariant, BRS transtormation, vanish by e.o.m. Vanish in physical matrix elements
2×2 mixing matrix

$$
\binom{\langle x\rangle_{g}^{\overline{\mathrm{MS}}}(\mu)}{\sum_{q}\langle x\rangle_{q}^{\mathrm{MS}}(\mu)}=\left(\begin{array}{cc}
Z_{g g}^{\overline{\mathrm{MS}}}(\mu) & Z_{g q}^{\overline{\mathrm{MS}}}(\mu) \\
Z_{q g}^{\mathrm{MS}}(\mu) & Z_{q q}^{\mathrm{MS}}(\mu)
\end{array}\right)\binom{\langle x\rangle_{g}}{\sum_{q}\langle x\rangle_{q}}
$$

$$
\langle x\rangle_{g}^{R}=Z_{g g}\langle x\rangle_{g}^{B}+Z_{g q} \sum_{q}\langle x\rangle_{q}^{B}
$$

$$
\sum_{q}\langle x\rangle_{q}^{R}=Z_{q q} \sum_{q}\langle x\rangle_{q}^{B}+Z_{q g}\langle x\rangle_{g}^{B}
$$

\star Quenched case: $Z_{q g}=1-Z_{q q}, Z_{g q}=1-Z_{q q}$

Challenges

Disconnected diagram

- Small signal-to-noise ratio - Requires special techniques

\star Renormalization

- Mixing with operator for $\langle x\rangle_{u+d}$

Unavoidable

- Mixing with other Operators Gauge Invariant, BRS transtormation, vanish by e.o.m. Vanish in physical matrix elements
2×2 mixing matrix

$$
\binom{\langle x\rangle_{g}^{\overline{\mathrm{MS}}}(\mu)}{\sum_{q}\langle x\rangle_{q}^{\mathrm{MS}}(\mu)}=\left(\begin{array}{cc}
Z_{g g}^{\overline{\mathrm{MS}}}(\mu) & Z_{g q}^{\overline{\mathrm{MS}}}(\mu) \\
Z_{q g}^{\mathrm{MS}}(\mu) & Z_{q q}^{\mathrm{MS}}(\mu)
\end{array}\right)\binom{\langle x\rangle_{g}}{\sum_{q}\langle x\rangle_{q}}
$$

$$
\langle x\rangle_{g}^{R}=Z_{g g}\langle x\rangle_{g}^{B}+Z_{g q} \sum_{q}\langle x\rangle_{q}^{B}
$$

$$
\sum_{q}\langle x\rangle_{q}^{R}=Z_{q q} \sum_{q}\langle x\rangle_{q}^{B}+Z_{q g}\langle x\rangle_{g}^{B}
$$

\star Quenched case: $Z_{q g}=1-Z_{q q}, Z_{g q}=1-Z_{q q}$
MUST compute mixing coefficients and subtract contributions Perturbation Theory

Perturbative computation

Elimination of mixing

Application for TM fermions

[C. Alexandrou et al. (ETMC), 2016]

$$
\begin{gathered}
\langle x\rangle_{u+d+s}^{R}=Z_{q q}\langle x\rangle_{u+d+s}+Z_{q g}\langle x\rangle_{g}=0.748(105) \\
\langle x\rangle_{g}^{R}=Z_{g g}\langle x\rangle_{g}+Z_{g q}\langle x\rangle_{u+d+s}=0.320(24)
\end{gathered}
$$

Momentum Conservation

$$
\sum_{q=u, d, s}\langle x\rangle_{q}^{R}+\langle x\rangle_{G}^{R}=\langle x\rangle_{u+d}^{C I, R}+\langle x\rangle_{u+d+s}^{D I, R}+\langle x\rangle_{G}^{R}=1.068(108)
$$

Energy-momentum Tensor

Y.-B. Yang et al., (χ QCD), 2016
$m_{\pi, v}=400 \mathrm{MeV}, m_{\pi, s}=170 \mathrm{MeV}$
Preliminary
Large gluon contribution

C

Nucleon FFs \& GPDs

4

Proton Spin

Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

$$
\frac{1}{2}=\sum_{q} J^{q}+J^{G}=\sum_{q}\left(L^{q}+\frac{1}{2} \Delta \Sigma^{q}\right)+J^{G}
$$

$L_{q}:$ Quark orbital angular momentum
$\Delta \Sigma_{q}:$ intrinsic spin
$J^{G}:$ Gluon part

Proton Spin: Can we put the puzzle together?

Spin Structure from First Principles

Spin Sum Rule:

$$
\frac{1}{2}=\sum_{q} J^{q}+J^{G}=\sum_{q}\left(L^{q}+\frac{1}{2} \Delta \Sigma^{q}\right)+J^{G}
$$

$$
\begin{aligned}
& L_{q}: \text { Quark orbital angular momentum } \\
& \Delta \Sigma_{q}: \text { intrinsic spin } \\
& J^{G}: \text { Gluon part }
\end{aligned}
$$

Extraction from LQCD:

$$
J^{q}=\frac{1}{2}\left(A_{20}^{q}+B_{20}^{q}\right), \quad L^{q}=J^{q}-\Sigma^{q}, \quad \Sigma^{q}=g_{A}^{q}
$$

* Individual quark contributions: disconnected insertion contributes

Quark Contributions to Spin

Valence Quarks Contributions

\star Valence Quark carry ~ half of the proton spin
Where does the rest of the spin comes from?

* Sea Quark Contributions
* Gluon Contributions

Quark Contributions to Spin

Valence + Sea Quarks Contributions

\star Sea Quark contribution bring data in agreement with experiment!

Energy-Momentum Tensor

Glue Spin

[Y.-B. Yang et al. (χ QCD), arXiv:1609.05937]

HYP smearing
LML: $\left(\mu^{2}=10 \mathrm{GeV}^{2}\right)$
$S_{G}=0.287(55)(16)$

1-loop pert. renormalization \& normalization of gluon self-energy

Talk by Yi-Bo Yang, Mon @ 12:20pm

D

SUMMARY

SUMMARY

Lattice QCD milestones:

\star Simulations of the physical world
\star Large effort on addressing the systematics
\star Calculation of more involved quantities
\star New approaches to address parton distributions e.g. quasi-PDFs (Ji's definition)
\star Predictions related to Physics BSM

Join us!

TTEMPLE
 UNIVERSITY*

Joint POETIC7 \& CTEQ Meeting

$7^{t h}$ International Conference on
Physics Opportunities @ ElecTron-Ion-Collider

Temple University, November 14-18, 2016

