The spin structure function of the proton, g_1^p , at low x and low Q^2 from COMPASS

V. Andrieux*1 on behalf of the COMPASS collaboration

¹University of Illinois at Urbana-Champaign

July 1, 2016

Abstract

We present COMPASS results on the longitudinal double-spin asymmetry, A_1^p , and the spin dependent structure function of the proton, g_1^p , in the quasi-real photoproduction regime. Data were collected by scattering a longitudinally polarised muon beam off a longitudinally polarised proton target. Two data sets with a beam energy of respectively 160 and 200 GeV were taken, which improve, once combined, the statistical precision on A_1^p and g_1^p by a factor of 12 compared to the previous SMC experiment covering a similar kinematic region. The high statistical precision allows A_1^p and g_1^p to be measured in several 2-D grids, (x, Q^2) , (ν, Q^2) , (x, ν) and (Q^2, x) within the following kinematic domain: $4.0 \times 10^{-5} \le x \le 4.0 \times 10^{-2}$, $0.001 \le Q^2 \le 1$ (GeV/c)² and $14 \le \nu \le 194$ GeV. The presented measurements provide inputs to better constrain non-perturbative models of electroproduction.

^{*}vincent.andrieux@cern.ch