# Spin structure of the proton at low x and low $Q^2$ in two-dimensional bins from COMPASS

Vincent Andrieux (University of Illinois at Urbana-Champaign) on behalf of the COMPASS Collaboration



SPIN 2016, Urbana-Champaign, IL, USA - September 24<sup>th</sup>-30<sup>th</sup>, 2016





Aknowledgements: Ana Sofia Nunes (main analysis investigator)

#### Motivation

- low  $x \leftrightarrow$  high parton densities
- low x and low  $Q^2 \leftrightarrow$  transition from the regime of photoproduction to the regime of DIS (described by pQCD)
- theoretical predictions for  $g_1^p$  as function of two kinematic variables:
  - ▶ Badełek et al., Eur.Phys.J. C26 (2002) 45

    "Spin structure function g<sub>1</sub>(x, Q<sup>2</sup>) and the DHGHY integral I(Q<sup>2</sup>) at low Q<sup>2</sup>:

    Predictions from the GVMD model"
  - ► Ermolaev et al., Eur.Phys.J. C58 (2008) 29

    "Comment on the recent COMPASS data on the spin structure function g<sub>1</sub>"
  - ► Ermolaev et al., Riv.Nuovo Cim. 33 (2010) 57 "Overview of the spin structure function  $g_1$  at arbitrary x and  $Q^2$ " "one can parameterize  $g_1$  by the set of variables x,  $Q^2$  or, alternatively,  $\omega[\equiv 2pq = 2M(E E')]$ ,  $Q^2$ , or  $\nu$ ,  $Q^2$ "
- COMPASS'  $\sim 7 \times 10^8$  events allow a 2D extraction
  - extraction, for the first time, in 4 2D grids:  $(x, Q^2)$ ,  $(\nu, Q^2)$ ,  $(x, \nu)$ ,  $(Q^2, x)$

#### The COMPASS experiment at CERN

#### COMPASS @ CERN

COmmon Muon Proton
Apparatus for Structure
and Spectroscopy



- Fixed target experiment at the SPS using a tertiary muon beam
- Collaboration of about 200 members from 11 countries and 23 institutions



- 160/200 GeV  $\mu^+$  polarised beam,  $P_{\rm b} \sim -80\%$
- <sup>6</sup>LiD or NH<sub>3</sub>, 1.2 m long, polarised target @ 2.5 T and 60 mK,  $P_{\rm target} \sim 50/85\%$
- large acceptance, two staged spectrometer
- tracking, calorimetry, PID

#### Polarised target



| ×I   | <b>,</b> 3  |            |                                         |     |  |
|------|-------------|------------|-----------------------------------------|-----|--|
| 1600 | COMPASS Pre | liminary   |                                         |     |  |
| 1400 | 160 GeV be  |            |                                         |     |  |
| 1200 | 200 GeV be  | sam (2011) |                                         |     |  |
| 1000 |             |            | -                                       | 1   |  |
| 800  |             | - 400      | 1                                       |     |  |
| 600  | 4           | m ai       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |     |  |
| 400  |             | A          |                                         |     |  |
| 200  | مرائح       |            | M Y                                     | ıll |  |
| 200F | 1 /         | M          | M N                                     | 11  |  |

| Material         | Dilution<br>factor (f) | $ \begin{array}{c} \textbf{Polarisation} \\ (\textbf{P}_{target}) \end{array} $ |
|------------------|------------------------|---------------------------------------------------------------------------------|
| <sup>6</sup> LiD | 0.40                   | 50%                                                                             |
| NH <sub>3</sub>  | 0.16                   | 85%                                                                             |



#### Reaction of interest



 $Q^2$ : photon virtuality

x: Bjorken scaling variable

(fraction of nucleon mometum carried by the struck quark)

 $\nu$ : Virtual photon energy

Oberservables:  $A_1^p$  and  $g_1^p$  Related to  $\Delta q$  (high  $Q^2$ ) + non perturbative mechanisms (low  $Q^2$ )

### Data samples for the extraction of $A_1^p$ and $g_1^p$

- Longitudinally polarised target (NH<sub>3</sub>):  $676 \times 10^6$  events (447  $\times$  10<sup>6</sup> with 160 GeV beam in 2007, 229  $\times$  10<sup>6</sup> with 200 GeV beam in 2011)
- Before, SMC low x, low  $Q^2$  proton data:  $4.5 \times 10^6$  events  $\Rightarrow$  The COMPASS data set has  $150 \times$  more events than SMC

#### Main selection criteria:

- ullet at least one additional track (besides the scattered muon) in the interaction point ("hadron method") SMC proved there is no bias to the inclusive asymmetries at low x
- ullet not a  $\mu e$  elastic scattering event
- $Q^2 < 1 (\text{GeV}/c)^2$
- $x > 4 \times 10^{-5}$
- 0.1 < v < 0.9

#### Phase-space coverage of the 2D analysis



#### Double longitudinal spin asymmetry measurement

#### Asymmetry extraction at COMPASS

$$A_1 = \frac{1}{|P_B P_T| f D} \left( \frac{N^{-} - N^{-}}{N^{-} + N^{-}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

#### COMPASS target



#### Double longitudinal spin asymmetry measurement

#### Asymmetry extraction at COMPASS

$$A_1 = \frac{1}{|P_B P_T| f D} \left( \frac{N^{-} - N^{-}}{N^{-} + N^{-}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

#### COMPASS target



 $\rightarrow$  Reversal by field rotation every 24h to cancel out acceptance difference

#### Double longitudinal spin asymmetry measurement

#### Asymmetry extraction at COMPASS

$$A_1 = \frac{1}{|P_B P_T| f D} \left( \frac{N^{-} - N^{-}}{N^{-} + N^{-}} \right)$$

Simultaneous recording of the two spin states in oppositely polarised target cells

#### **COMPASS** target



- → Reversal by field rotation every 24h to cancel out acceptance difference
- → Reversal by micro-wave once in a while to cancel out acceptance/field correlation

### Double longitudinal spin asymmetry $A_1^p$

- ullet Each event is given a weight  $\omega=f\,D|P_{\mathsf{beam}}|$  to optimize the statistical errors
- Unpolarised radiative corrections (RC), included in the dilution factor, from TERAD

[A.A. Akhundov, et al., Fortschr. Phys. 44 (1996) 373]

- Polarised radiative corrections ( $A^{RC} \le 0.25 \, \delta A_1^{stat}$ ) from POLRAD [I. Akushevich *et al.*, Comput.Phys.Commun. 104 (1997) 201]
- Corrected for polarisable  $^{14}$ N ( $A^{^{14}}$ N  $\leq 0.01 \, \delta A_1^{\rm stat}$ )
- Thorough checks on possible sources of false asymmetries ⇒ systematic uncertainties similar to the statistical errors

### Spin dependent structure function $g_1^p$

• The structure function is obtained in bins of x or  $\nu$  according to:

$$g_{1}^{p}\left(\langle x\rangle,\langle Q^{2}\rangle\right)=\frac{F_{2}^{p}\left(\langle x\rangle,\langle Q^{2}\rangle\right)}{2x\left[1+R\left(\langle x\rangle,\langle Q^{2}\rangle\right)\right]}A_{1}^{p}\left(\langle x\rangle,\langle Q^{2}\rangle\right)$$

- $\mathbf{F}_2^p(\langle \mathbf{x} \rangle, \langle \mathbf{Q}^2 \rangle)$  from the SMC fit on data or from a model (for low x and  $Q^2$ ) [SMC, Phys.Rev. D58 (1998), 112001; B. Badełek & J. Kwieciński, Phys.Lett. B295 (1992) 263]
- $R(\langle x \rangle, \langle Q^2 \rangle)$  based on SLAC parameterization, extended to low  $Q^2$  [COMPASS, PLB 647 (2007) 330]

### $A_1^p(x)$ & comparison with previous experiments



- results for the two beam energies are compatible within errors
- systematic errors are similar to the statistical errors (not shown here)
- A<sub>1</sub><sup>p</sup> is significantly positive
- no dependence on x is seen (nor on  $\nu$ , not shown here)
- the COMPASS results improve the precision of the measurement

## $A_1^p$ and $g_1^p$ at low x and low $Q^2$ : results for the grid $(x, Q^2)$

Data: 2007&2011,  $\mu^+ p o \mu^+ X$ 





- no strong dependence on x or  $Q^2$
- results compatible with theoretical model (GVMD) [Eur.Phys.J. C26 (2002) 45]

## $A_1^p$ and $g_1^p$ at low x and low $Q^2$ : results for the grid $(\nu, Q^2)$

Data: 2007&2011,  $\mu^+ p o \mu^+ X$ 





- no strong dependence on  $\nu$  or  $Q^2$
- results compatible with theoretical model (GVMD) [Eur.Phys.J. C26 (2002) 45]

### $A_1^p$ and $g_1^p$ at low x and low $Q^2$ : results for the grid $(\nu, x)$

Data: 2007&2011,  $\mu^+ p \to \mu^+ X$ 





- no strong dependence on  $\nu$  or x
- results compatible with theoretical model (GVMD) [Eur.Phys.J. C26 (2002) 45]

# $A_1^p$ and $g_1^p$ at low x and low $Q^2$ : results for the grid $(Q^2, x)$

Data: 2007&2011,  $\mu^+ p \to \mu^+ X$ 





- no strong dependence on x or  $Q^2$
- results compatible with theoretical model (GVMD) [Eur.Phys.J. C26 (2002) 45]

#### Summary and outlook

- Longitudinal double spin asymmetries  $\mathbf{A}_{1}^{\rho}$  and the spin dependent structure function  $\mathbf{g}_{1}^{\rho}$  extracted in 4 two-dimensional grids:
  - $(x, Q^2)$
  - $(\nu, Q^2)$
  - $\triangleright$   $(\nu, x)$
  - $\triangleright$   $(Q^2, x)$
- Positive spin asymmetries at very low x
- No significant dependence on studied kinematic variables
- Compatibility with GVMD model predictions [Eur.Phys.J. C26 (2002) 45]

#### **BACKUP**

### Characteristics of the final sample



### GVMD model [Eur.Phys.J. C26 (2002) 45]

[Badełek et al., Eur.Phys.J. C26 (2002) 45]

$$\begin{split} g_1(x,Q^2) &= g_1^{\rm L}(x,Q^2) + g_1^{\rm AS}(\bar{x},Q^2 + Q_0^2) \\ &= C \left[ \frac{4}{9} (\Delta u_{\rm val}^{(0)}(x) + \Delta \bar{u}^{(0)}(x)) \right. \\ &+ \left. \frac{1}{9} (\Delta d_{\rm val}^{(0)}(x) + \Delta \bar{d}^{(0)}(x)) \right] \frac{M_\rho^4}{(Q^2 + M_\rho^2)^2} \\ &+ C \left[ \frac{1}{9} (2\Delta \bar{s}^{(0)}(x)) \right] \frac{M_\phi^4}{(Q^2 + M_\phi^2)^2} \\ &+ g_1^{\rm AS}(\bar{x},Q^2 + Q_0^2). \end{split} \tag{5}$$

To obtain the value of C from (12), the contribution of resonances was evaluated using the preliminary data taken at ELSA/MAMI by the GDH Collaboration [16] at the photoproduction, for  $W_t=1.8~{\rm GeV}$ . The asymptotic part of  $g_1$  was parametrized using the GRSV2000 fit for the "standard scenario" of polarized parton distributions with a flavor symmetric light sea,  $\Delta \overline{u} = \Delta \overline{d} = \Delta s = \Delta \overline{s}$ , at the NLO accuracy [9]. The non-perturbative parton distributions,  $\Delta p_j^{(0)}(x)$ , in the light vector meson component of  $g_1$ , (3), were evaluated at fixed  $Q^2 = Q_{B_1}^2$  using, either

- (i) the GRSV2000 fit, or
- (ii) a simple, "flat" input:

$$\Delta p_i^{(0)}(x) = N_i (1-x)^{\eta_i},$$
 (13)

with  $\eta_{u_v} = \eta_{d_v} = 3$ ,  $\eta_u = \eta_s = 7$  and  $\eta_g = 5$ . The normalization constants  $N_i$  were determined by imposing the Bjorken sum rule for  $\Delta u_v^{(0)} - \Delta d_v^{(0)}$ , and requiring that the first moments of all other distributions are the same as those determined from the QCD analysis [18]. It was checked that the parametrization (13) combined with the unified equations gives a reasonable description of the SMC data on  $g_i^{\rm NS}(x,Q^2)$  [19] and on  $g_i^{\rm P}(x,Q^2)$  [5]. This fit was also used to investigate the magnitude of the double logarithmic corrections,  $\ln^2(1/x)$ , to the spin structure function of the proton at low x [20]. We have assumed  $Q_0^2 = 1.2 \, {\rm GeV}_i$  [1) and (3), in accordance with the analysis of  $F_2$  [7, 8]. As a result the constant C was found to be -0.30 in case (i) and -0.24 in case (ii). These values change at most by 13% when  $Q_0^2$  changes in the interval  $1.0 < Q_0^2 < 1.6 \, {\rm GeV}^2$ .

### GVMD model predictions [Eur.Phys.J. C26 (2002) 45]



Fig. 1. Values of  $g_1$  for the proton as a function of x and  $Q^2$ . The asymptotic contribution,  $g^{4S}$ , is marked with broken lines, the VMD part,  $g^L_1$ , with dotted lines and the continuous curves mark their sum, according to (5)



Fig. 2. Values of  $x_B$ , for the proton as a function of x at the measured values of  $Q^2$  in the non-resonant region,  $x < x_a = Q^2/2M\nu_i(Q^2)$ . The upper plot corresponds to the VMD part parametrized using [13], the lower plot corresponds to the GRSV parametrization [9] of the VMD input. The  $g^{AB}$  in both plots has been calculated using the GRSV fit for standard scenario at the NLO accuracy. The contributions of the VMD and of the  $x_b^{AB}$  are shown separately. Points are the SMC measurements at  $Q^2 < 1 \, \text{GeV}^2$  [3]; errors are total. The curves have been calculated at the measured x and  $Q^2$  values