The Proton Spin-dependent Structure g₂ at Low Q²

Jixie Zhang University of Virginia

22nd international Spin Symposium Sep. 25-30, 2016

Outline

Introduction

(Refer to A. Deur's talk "nuclear spin structure study at Jlab", Session Helicity-Parallel II)

Physics Motivation

(Refer to K. Slifer's talk "nucleon spin structure with lepton beam at low Q²", Plenary X)

- Experiment Setup
- Analysis and Preliminary Results

Electron Scattering

Important kinematics variables:

$$\nu = E - E'$$

- Q^2 : Momentum transfer squared
- ${\it W}$: Invariant mass of residual hadronic system
- $x=\frac{Q^2}{2M\nu}$: Bjorken variable: fraction momentum of struck quark

Electron Scattering

Inclusive unpolarized cross section:

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} \right]$$

Structure Function which indicates the parton distribution

Polarized Electron Scattering

 If the beam and target are polarized, the asymmetric part of the lepton and hadron tensor will not vanish, which leads to 2 additional structure functions g₁ and g₂

$$\frac{d^2\sigma}{d\Omega dE'} = \sigma_{\text{Mott}} \left[\frac{1}{\nu} F_2(x, Q^2) + \frac{2}{M} F_1(x, Q^2) \tan^2 \frac{\theta}{2} + \gamma g_1(x, Q^2) + \delta g_2(x, Q^2) \right]$$

2 addition Structure Function which related to the polarized parton distribution

Spin Structure Function

At Bjorken limit, g₁ related to the polarized parton distribution functions

$$g_1 = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x)$$
 $\Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$

- g₂ is zero in the naive parton model: non-zero value carries information of quark-gluon interaction
- Concept of "twist":
 - Leading twist: related to amplitude for scattering off asymptotically free quarks
 - Higher twists: quark-gluon interaction and the quark mass effects

Spin Structure Function

• g_2^{WW} is the leading twist part of the g_2 :

$$g_2(x, Q^2) = g_2^{WW}(x, Q^2) + \bar{g}_2(x, Q^2)$$

which can be calculated from g₁ with the Wandzura-Wilczek relation

$$g_2^{\text{WW}} = -g_1(x, Q^2) + \int_x^1 \frac{\mathrm{d}y}{y} g_1(y, Q^2)$$

Higher twist components can be expressed as:

$$\bar{g}_2(x,Q^2) = -\int_x^1 \frac{\partial}{\partial y} \left[\frac{m_q}{M} h_T(y,Q^2) + \zeta(y,Q^2) \right] \frac{\mathrm{d}y}{y}$$

quark transverse momentum contribution

twist-3 part which arises from quarkgluon interactions

Will get information about higher twist effect when measuring g₂

How to get g₂

$$\Delta \sigma_{\perp} = -e^{-} - -e^{-} - e^{-} -$$

g₂^p experiment will measure this, combing the EG4 data to get g₂^p at low Q²

Physics Motivation

- Measure the proton structure function g₂ in the low Q² region (0.02-0.2GeV²) for the first time
 - Extract the generalized longitudinal-transverse spin polarizability δ_{LT} as a test of Chiral Perturbation Theory (χPT) calculations
 - Test the Burkhardt-Cottingham (BC) sum rule
 - Crucial inputs for Hydrogen hyperfine splitting calculation

Existing Data

SPIN2016

- SLAC experiment E143, E155, E155x and JLab experiment RSS and SANE have measured proton g₂ on a wide Q² range
- However lack low Q² data

 From the dispersion relation of the doubly-virtual Compton scattering amplitude, one could derive generalized spin polarizability

$$\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [\mathbf{g_1} - \frac{4M^2}{Q^2} x^2 \mathbf{g_2}] dx$$

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [\mathbf{g_1} + \mathbf{g_2}] dx$$

- Can be expressed as structure functions
- Can be calculated via Chiral Perturbation Theory

Neutron data shows large deviation between data and xPT prediction

M. Amarian et al., Phys. Rev. Lett. 93(2004)152301

- At low Q², the generalized polarizabilities have been evaluated with NLO χPT calculations:
 - Heavy Baryon χPT (C. W. Kao, T. Spitzenberg and M. Vanderhaeghen, Phys. Rev. D, 67(2003)016001)
 - Relativistic Baryon χPT (V. Bernard, T. Hemmert and U.G. Meissner, Phys. Rev. D, 67(2003)076008)
- One issue in the calculation is how to properly include the nucleon resonance contributions, especially the Δ resonance
 - γ₀ is sensitive to resonances
 - δ_{LT} is insensitive to the Δ resonance
- δ_{LT} should be more suitable than γ_0 to serve as a testing ground for the chiral dynamics of QCD

Improved calculation result with Relativistic Baryon χΡΤ:

The neutron data point are from E94-010

- Red solid line: LO
- Blue band: NLO
- Black dashed line: MAID model

V. Lensky, J. M. Alarcon and V. Pascalutsa, Phys. Rev. C 90(2014)055202

Improved calculation result with Relativistic Baryon χΡΤ:

• It was claimed that the δ_{LT} puzzle is solved with this new calculation, however it should be test with proton data

14

V. Lensky, J. M. Alarcon and V. Pascalutsa, Phys. Rev. C 90(2014)055202

BC Sum Rule

- SLAC E155x
- Hall C RSS
- Hall A E94-010
- Hall A E97-110 (preliminary)
- Hall A E01-012 (preliminary)

BC Sum Rule:

$$\int_0^1 g_2(x, Q^2) \mathrm{d}x = 0$$

- Violation suggested for proton at large Q²
- But found satisfied for the neutron
- Mostly unmeasured for proton
- To experiment test BC sum rule, one need to combine measured g₂ data with some low x model and elastic contribution

Proton Radius Puzzle

- The finite size of the nucleus plays a small but significant role in atomic energy levels
- Simplest: proton
- 2 ways to measure:
 - energy splitting of the 2S_{1/2}-2P_{1/2} level (Lamb shift)
 - scattering experiment
- The result do not match when using muonic hydrogen
 - $\langle R_p \rangle = 0.84184 \pm 0.00067 \text{fm}$ by Lamb shift in muonic hydrogen
 - $\langle R_p \rangle = 0.87680 \pm 0.0069 \text{fm CODATA world}$ average

Hydrogen Hyperfine Structure

 Hydrogen hyperfine splitting in the ground state has been measured to a relative high accuracy of 10⁻¹⁵

$$\sum_{N=2, 2p} \frac{1}{2p} \frac{1}{2p} \int_{J=1/2}^{J=3/2} \frac{\frac{F=2}{F=1}}{\frac{F=1}{F=0}}$$
 $\sum_{J=1/2} \frac{F=1}{\frac{F=1}{F=0}} \int_{\mathbb{R}^2} \frac{dF}{dF} dF$ $\delta = (1+\delta)E_F$ $\delta = (\delta_{\mathrm{QED}} + \delta_R + \delta_{\mathrm{small}}) + \Delta_S$

• Δ_s is the proton structure correction and has the largest uncertainty

$$\Delta_S = \Delta_Z + \Delta_{\text{pol}}$$

- Δz can be determined from elastic scattering, which is -41.0±0.5×10⁻⁶
- Δ_{pol} involves contributions of the inelastic part (excited state), and can be extracted to 2 terms corresponding to 2 different spin-dependent structure function of proton

Hydrogen Hyperfine Structure

$$\Delta_{\mathrm{pol}} = \frac{\alpha m_e}{\pi g_p m_p} (\Delta_1 + \Delta_2)$$

Integrand of Δ_2

$$\Delta_2 = -24m_p^2 \int_0^\infty \frac{dQ^2}{Q^4} B_2(Q^2)$$

$$B_2(Q^2) = \int_0^{x_{\text{th}}} dx \beta_2(\tau) g_2(x, Q^2)$$

$$\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)}$$

- B₂ is dominated by low Q² part
- g_2^p is unknown in this region, so there may be huge error when calculating Δ_2
- This experiment will provide a constraint

V. Nazaryan, C. E. Carlson, and K. A. Griffioen, Phys. Rev. Lett. 96(2006)163001

Experiment Setup

g2p experiment ran in Jefferson Lab Hall A from Feb 29th to May 18th, 2012

Hall A

Thomas Jefferson National Accelerator Facility

19

Experiment Setup

- Major new installed instruments in Hall A
 - Polarized NH₃ target
 - Low current beam diagnostics

Polarized Target

- Polarized NH3 Target
 - 2.5T/5.0T field generated by a pair of Helmholtz coils for polarizing solid NH3 target material
 - Outgoing beam will be tilted by the large target field

Kinematics Coverage

$$M_p < W < 2 \text{ GeV}$$

 $0.02 < Q^2 < 0.2 \text{ GeV}^2$

Beam Energy (GeV)	Target Field (T)		
2.254	2.5		
1.706	2.5		
1.158	2.5		
2.254	5		
3.352	5		

Analysis

Charge and yield in different beam helicity state (finished)

polarization (finished)

Total Charge (finished)

 $\sigma_0^{\rm phy} = \sigma_0^{\rm raw} \times D$

Subjects as input:

Beam position

Spectrometer optics

(finished)

Optics Study

- HRS has a series of magnets
 - 3 quadrupoles to focus and 1 dipole to disperse on momentums
- Optics study will provide a matrix to transform VDC readouts to kinematics variables which represents the effects of these magnets

Optics Study

- Optics study for g2p: the most important part is how to treat the transverse target field
- Idea: separate reconstruction process to 2 parts:
 - Use the normal optics matrix to reconstruct from the VDC to sieve slit

Optics Calibration

- Run simulation to decide the effective theta and phi
 - Use the BPM readout to set the beam position
 - Beam energy 1.706 GeV, target field 2.5T

Optics Calibration: Angle

Optics Study

 The performance summary of the optics with target field: the table shows a summary of the RMS values of each kinematic variables after calibration

HRS	Beam Energy (GeV)	Filed Strength (T)	Filed Angle (deg)	δ	θ	φ
L	2.254	2.5	90	2.2x10 ⁻⁴	1.8 mrad	1.8 mrad
L	1.710	2.5	90	2.4x10 ⁻⁴	2.4 mrad	1.5 mrad
L	1.157	2.5	90	3.2x10 ⁻⁴	2.1 mrad	1.3 mrad
L	2.254	5.0	0	2.2x10 ⁻⁴	1.6 mrad	1.2 mrad
R	2.254	2.5	90	2.5x10 ⁻⁴	2.2 mrad	1.8 mrad
R	1.710	2.5	90	2.3x10 ⁻⁴	2.7 mrad	1.7 mrad
R	1.157	2.5	90	3.4x10 ⁻⁴	1.9 mrad	1.5 mrad

The optics with target field works well

Thanks to Chao Gu, Min Huang

2.254GeV 5T Longitudinal Asymmetry

2.254GeV 5T Transverse Asymmetry

- Fully radiated asymmetries (red curve)
- Cross section models: P. Bosted's fit (unpolarized) and MAID 2007 (polarized)
- Include Unpolarized and polarized elastic tail
- Radiating methods: Mo/Tsai (unpolarized) and Akushevich/Ilyichev/Shumeiko (polarized)

$$\Delta \sigma_{\perp} = A_{\perp} \times \sigma_0$$

$$A_{\perp} = rac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}}$$

- Preliminary results for 2.254GeV, 5T trans configuration
 - · The unpolarized cross section is from P. Bosted's fit
 - Compared with radiated MAID model prediction

- Preliminary results for 2.254GeV, 5.0T trans configuration
- Q² ~ 0.1 GeV² for this setting
- The integral is from x=0 to the pion threshold
- We measured x as low as 0.04 and the unmeasured region will be evaluated with

 $\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 + g_2] dx$

 Low x contribution is suppressed due to the x² weight in the integral

• Once the analysis is done, we should be able to provide the at four different Q² as shown in the plot

Summary

- The g2p experiment ran in spring 2012 and took data covering 0.02 < Q² < 0.20 GeV²
- Will provide an accurate measurement of g₂ in low Q² region for the first time
 - Extract the fundamental quantities δ_{LT} to provide a test of χPT calculations
 - Test the Burkhardt-Cottingham (BC) Sum Rule
- New instruments are demonstrated working well during the experiment (1 NIM paper published and 1 NIM paper in preparation)
- Data analysis is currently underway

g2p Collaboration

Spokespeople

Alexander Camsonne

J.P. Chen

Don Crabb

Karl Slifer

Post Docs

Kalyan Allada

Elena Long

Vince Sulkosky

Jixie Zhang

Graduate Students

Toby Badman

Melissa Cummings

Chao Gu

Min Huang

Jie Liu

Pengjia Zhu

Ryan Zielinski

Backups

Analysis

- To reduce uncertainty, polarized cross section difference is derived from asymmetry and unpolarized cross section
 - For asymmetry, most of the systematic uncertainties cancelled, all data can be included to minimize the statistic error
 - For cross section, the statistic uncertainty is less important, so only the data with small systematic uncertainty is selected

$$\Delta \sigma_{\perp} = A_{\perp} \times \sigma_0$$

$$A_{\perp}^{
m phy} = rac{A_{\perp}^{
m raw}}{DP_{
m b}P_{
m t}} \hspace{0.5cm} A_{\perp}^{
m raw} = rac{rac{N^+}{Q^+} - rac{N^-}{Q^-}}{rac{N^+}{Q^+} + rac{N^-}{Q^-}}$$

$$\sigma_0^{
m phy} = \sigma_0^{
m raw} imes D \qquad \sigma_0^{
m raw} = rac{N}{N_{
m in}
ho \epsilon_{
m det}} imes rac{1}{A}$$

Projections

Optics Goal

- The g2p experiment will measure the proton structure function g₂ in the low Q² region (0.02-0.2 GeV²) for the first time
- Goal: 5% systematic uncertainty when measuring cross section
- Optics Goal:
 - <1.0% systematic uncertainty of scattering angle, which will contribute <4.0% to the uncertainty of cross section

$$\sigma \sim 1/\sin^4(\theta/2)$$

 Momentum uncertainty is not as sensitive, but it is not hard to reach 10⁻⁴ level

Angle Calibration

- Determine the center scattering angle
 - Survey: ~1mrad
 - Idea: Use elastic scattering on different target materials

$$\Delta E' = \frac{E}{1 + \frac{E}{M_1}(1 - \cos \theta)} - \frac{E}{1 + \frac{E}{M_2}(1 - \cos \theta)}$$

- Data taking: Carbon foil in LHe, or CH₂ foil
- Two elastic peak took at the same time
- The accuracy to determine this difference is <50KeV -> <0.5mrad

Matrix Calibration

- Calibrate the angle and momentum matrix elements:
 - Use carbon foil target and point beam
 - Use sieve slit to get the real scattering angle from geometry
 - Angle: Fit with data which we already know the real scattering angle

Momentum: Use the real scattering angle to calculate elastic

scattering momentum of carbon target

000**0**000

Matrix Calibration: Angle

Matrix Calibration: Momentum

Relative momentum

Matrix Calibration: Angle

Matrix Calibration: Momentum

0

0.01

-8.04

-0.03

-0.02

-0.01

Relative momentum

0.04

Optics Study with Target Field

- Recalibrate the angle matrix elements:
 - Start with the matrix without target field
 - To fit the matrix element, need to know the effective theta and phi angle
 - What we know is reaction point and the coordinate of the sieve hole
 - Trace the scatted electrons with different initial angles and select out the trajectory which goes though the sieve hole

Optics Study with Target Field

- Reconstruct the scattering angle:
 - Use the HRS matrix to get the effective target variables
 - Project the effective target variables to sieve slit (red dot line)
 - Use the simulation package to calculate the trajectory of the scattered electron (red solid line), which will tell us the real scattering angle

