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Outline 

• Introduction  

 (Refer to A. Deur’s talk “nuclear spin structure  

 study at Jlab”, Session Helicity-Parallel II) 

• Physics Motivation 

 (Refer to K. Slifer’s talk “nucleon spin structure with 

 lepton beam at low Q2”, Plenary X) 

• Experiment Setup 

• Analysis and Preliminary Results 
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Important kinematics variables: 

•      

•     : Momentum transfer squared 

•     : Invariant mass of residual 

hadronic system 

•                   : Bjorken variable:  

 fraction momentum of struck quark 

Electron Scattering 
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Electron Scattering 
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Incident electrons 

Hadronic final states 
E 

E’ 

Target 

• Inclusive unpolarized cross section: 

Structure Function which 

indicates the parton distribution 
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Polarized Electron Scattering 

• If the beam and target are polarized, the asymmetric part of the 

lepton and hadron tensor will not vanish, which leads to 2 

additional structure functions g1 and g2 

2 addition Structure Function which related 

to the polarized parton distribution 
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Spin Structure Function 

• At Bjorken limit, g1 related to the polarized parton distribution functions 

 

 

• g2 is zero in the naive parton model: non-zero value carries information 

of quark-gluon interaction  

• Concept of “twist”: 

• Leading twist: related to amplitude for scattering off asymptotically 

free quarks 

• Higher twists: quark-gluon interaction and the quark mass effects  
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leading twist twist-3 
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•           is the leading twist part of the g2: 

 

• which can be calculated from g1 with the Wandzura-Wilczek relation 

 

 

• Higher twist components can be expressed as: 

 

 

 

 

• Will get information about higher twist effect when measuring g2 

Spin Structure Function 
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quark transverse momentum 

contribution 
twist-3 part which arises from quark-

gluon interactions 
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How to get g2 

e- e- 

e- e- 

JLab Hall B experiment EG4 

measured this quantity 

g2
p experiment will measure 

this, combing the EG4 data to 

get g2
p at low Q2 
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Physics Motivation 

• Measure the proton structure function g2 in the low Q2 region 

(0.02-0.2GeV2) for the first time 

• Extract the generalized longitudinal-transverse spin 

polarizability δLT as a test of Chiral Perturbation Theory (χPT) 

calculations 

• Test the Burkhardt-Cottingham (BC) sum rule 

• Crucial inputs for Hydrogen hyperfine splitting calculation 
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• SLAC experiment E143, E155, 

E155x and JLab experiment 

RSS and SANE have measured 

proton g2 on a wide Q2 range 

• However lack low Q2 data 

Existing Data 

Q2 = 1.3 GeV2 
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Generalized Longitudinal-Transverse Polarizability 

• From the dispersion relation of 

the doubly-virtual Compton 

scattering amplitude, one 

could derive generalized spin 

polarizability 

 

 

 

• Can be expressed as structure 

functions 

• Can be calculated via Chiral 

Perturbation Theory 
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M. Amarian et al., Phys. Rev. Lett. 

93(2004)152301 

Neutron data shows large deviation 

between data and χPT prediction 
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Generalized Longitudinal-Transverse Polarizability 

• At low Q2, the generalized polarizabilities have been evaluated 

with NLO χPT calculations: 

• Heavy Baryon χPT (C. W. Kao, T. Spitzenberg and M. 

Vanderhaeghen,   Phys. Rev. D, 67(2003)016001)  

• Relativistic Baryon χPT (V. Bernard, T. Hemmert and U.G. 

Meissner, Phys. Rev. D, 67(2003)076008) 

• One issue in the calculation is how to properly include the 

nucleon resonance contributions, especially the Δ resonance 

• γ0 is sensitive to resonances 

• δLT is insensitive to the Δ resonance 

• δLT should be more suitable than γ0 to serve as a testing ground 

for the chiral dynamics of QCD 
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Generalized Longitudinal-Transverse Polarizability 

• Improved calculation result with Relativistic Baryon χPT: 

13 

V. Lensky, J. M. Alarcon and V. Pascalutsa, Phys. Rev. C 

90(2014)055202 

• Red solid line: LO 

• Blue band: NLO 

• Black dashed line: MAID model 

The neutron data point are from E94-010  

Proton Neutron 
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Generalized Longitudinal-Transverse Polarizability 

• Improved calculation result with Relativistic Baryon χPT: 

14 

Proton Neutron 

• It was claimed that the δLT puzzle is solved with this new 

calculation, however it should be test with proton data  

V. Lensky, J. M. Alarcon and V. Pascalutsa, Phys. Rev. C 

90(2014)055202 
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BC Sum Rule 

• BC Sum Rule: 

 

 

• Violation suggested for proton at 

large Q2  

• But found satisfied for the 

neutron  

• Mostly unmeasured for proton 

• To experiment test BC sum rule, 

one need to combine measured 

g2 data with some low x model 

and elastic contribution 

■ SLAC E155x 

■ Hall C RSS  

■ Hall A E94-010 

■ Hall A E97-110 (preliminary) 

■ Hall A E01-012 (preliminary) 

P 

N 

g2p projected 
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• The finite size of the nucleus plays a small 

but significant role in atomic energy levels 

• Simplest: proton 

• 2 ways to measure: 

• energy splitting of the 2S1/2-2P1/2 level 

(Lamb shift) 

• scattering experiment 

• The result do not match when using muonic 

hydrogen 

• <Rp> = 0.84184±0.00067fm by Lamb shift 

in muonic hydrogen  

• <Rp> = 0.87680±0.0069fm CODATA world 

average 

R. Pohl et al, Nature, 466(2010)213 

Nucleus~10-15 

Proton Radius Puzzle 
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• Hydrogen hyperfine splitting in the ground state has been measured to a 

relative high accuracy of 10-15  

 

 

 

 

• ∆S is the proton structure correction and has the largest uncertainty 

 

• ∆Z can be determined from elastic scattering, which is -41.0±0.5×10-6 

• ∆pol involves contributions of the inelastic part (excited state), and can be 

extracted to 2 terms corresponding to 2 different spin-dependent 

structure function of proton  

Hydrogen Hyperfine Structure 
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Hydrogen Hyperfine Structure 

18 

• B2 is dominated by low Q2 part 

• g2
p is unknown in this region, so 

there may be huge error when 

calculating ∆2 

• This experiment will provide a 

constraint 

Integrand of ∆2 

g2
p Experiment 

V. Nazaryan, C. E. Carlson, and K. A. Griffioen, Phys. Rev. Lett. 

96(2006)163001 
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Experiment Setup 

g2p experiment ran in Jefferson 

Lab Hall A from Feb 29th to May 

18th, 2012 

Thomas Jefferson National Accelerator Facility 

Hall A 
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Experiment Setup 

BCM Rasters Chicane BPM 

Local 

Dump 

Beam 

diagnostics: 

Polarized  

NH3 Target 

Hall A High Resolution 

Spectrometer (HRS) 

Septa 

• Major new installed instruments in Hall A 

• Polarized NH3 target 

• Low current beam diagnostics 

• Septa magnets 
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Polarized Target 
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Polarized  

NH3 Target 

• Polarized NH3 Target 

• 2.5T/5.0T field generated by a pair of Helmholtz coils for polarizing 

solid NH3 target material 

• Outgoing beam will be tilted by the large target field 

Field region 
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Kinematics Coverage 

Beam Energy 

(GeV) 
Target Field (T) 

2.254 2.5 

1.706 2.5 

1.158 2.5 

2.254 5 

3.352 5 

Mp < W < 2 GeV 

0.02 < Q2 < 0.2 GeV2 
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Analysis 

23 

Dilution factor (finished) 

Beam and target 

polarization (finished) 

Total Charge 

(finished) 

Target Density Detector Efficiency 

(finished) 

Acceptance 

(on-going) 

Charge and yield in different 

beam helicity state (finished) 

• Subjects as input: 

• Beam position 

• Spectrometer optics 
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Optics Study 

Q1 

Q2 
Dipole 

Q3 

VDC 

Target 

First Order Matrix 

• HRS has a series of magnets 

• 3 quadrupoles to focus and 1 dipole to disperse on 

momentums 

• Optics study will provide a matrix to transform VDC readouts to 

kinematics variables which represents the effects of these 

magnets 

24 Jixie Zhang, UVA                    SPIN2016 



• Optics study for g2p: the most important part is how to 

treat the transverse target field 

• Idea: separate reconstruction process to 2 parts: 

• Use the normal optics matrix to reconstruct from the 

VDC to sieve slit 

• Use the field map to do ray tracing of the scattered 

electrons from sieve slit to target 

Optics Study 

Q1 
Q2 

Dipole 

Q3 

VDC 

Target 

Septa 
Sieve slit 
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Initial scattering angle 

Optics Calibration 

• Run simulation to decide the effective theta and phi 

• Use the BPM readout to set the beam position  

• Beam energy 1.706 GeV, target field 2.5T 

Effective angle to do the fitting 
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After Calibration Before Calibration 

Resolution: 1.6mrad (RMS) 

Optics Calibration: Angle 
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LHRS 
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Optics Study 

• The performance summary of the optics with target field: the table 

shows a summary of the RMS values of each kinematic variables after 

calibration 

 

 

 

 

 

 

 

• The optics with target field works well 
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HRS 
Beam Energy 

(GeV) 

Filed Strength 

(T) 

Filed Angle 

(deg) 
δ θ φ 

L 2.254 2.5 90 2.2x10-4 1.8 mrad 1.8 mrad 

L 1.710 2.5 90 2.4x10-4 2.4 mrad 1.5 mrad 

L 1.157 2.5 90 3.2x10-4 2.1 mrad 1.3 mrad 

L 2.254 5.0 0 2.2x10-4 1.6 mrad 1.2 mrad 

R 2.254 2.5 90 2.5x10-4 2.2 mrad 1.8 mrad 

R 1.710 2.5 90 2.3x10-4 2.7 mrad 1.7 mrad 

R 1.157 2.5 90 3.4x10-4 1.9 mrad 1.5 mrad 

Thanks to Chao Gu, Min Huang 
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Preliminary Results 

• Fully radiated asymmetries (red curve)  

• Cross section models: P. Bosted's fit (unpolarized) and MAID 2007 
(polarized) 

• Include Unpolarized and polarized elastic tail 

• Radiating methods: Mo/Tsai (unpolarized) and 
Akushevich/Ilyichev/Shumeiko (polarized) 

2.254GeV 5T Longitudinal Asymmetry 2.254GeV 5T Transverse Asymmetry 
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Preliminary Results 

• Preliminary results for 2.254GeV, 5T trans configuration 

• The unpolarized cross section is from P. Bosted's fit 

• Compared with radiated MAID model prediction 

Preliminary cross section differences Preliminary g2 
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Preliminary Results 

• Preliminary results for 
2.254GeV, 5.0T trans 
configuration 

• Q2 ~ 0.1 GeV2 for this setting 

• The integral is from x=0 to the 
pion threshold  

• We measured x as low as 0.04 
and the unmeasured region will 
be evaluated with 

Integrand of        
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Preliminary Results 

• Low x contribution is 
suppressed due to the x2 
weight in the integral 

• Once the analysis is done, we 
should be able to provide the 
at four different Q2 as shown 
in the plot 

Integrand of        
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Summary 

• The g2p experiment ran in spring 2012 and took data covering 

0.02 < Q2 < 0.20 GeV2 

• Will provide an accurate measurement of g2 in low Q2 region for 

the first time 

• Extract the fundamental quantities δLT to provide a test of χPT 

calculations 

• Test the Burkhardt-Cottingham (BC) Sum Rule  

• New instruments are demonstrated working well during the 

experiment (1 NIM paper published and 1 NIM paper in 

preparation) 

• Data analysis is currently underway 
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Analysis 

• To reduce uncertainty, polarized cross section difference is derived 

from asymmetry and unpolarized cross section 

• For asymmetry, most of the systematic uncertainties cancelled, all 

data can be included to minimize the statistic error 

• For cross section, the statistic uncertainty is less important, so 

only the data with small systematic uncertainty is selected 
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Projections 

LT Spin Polarizability BC Sum Integral  

g2p Projected 

g2p Projected 
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Optics Goal 

• The g2p experiment will measure the proton structure function 

g2 in the low Q2 region (0.02-0.2 GeV2) for the first time 

• Goal: 5% systematic uncertainty when measuring cross section 

• Optics Goal: 

• <1.0% systematic uncertainty of scattering angle, which will 

contribute <4.0% to the uncertainty of cross section 

 

• Momentum uncertainty is not as sensitive, but it is not hard to 

reach 10-4 level 
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E
’ 

He 
Peak 

C 
Peak 

        

Angle Calibration 

Target 

Center 

Angle 

θ0 

Septa • Determine the center scattering 

angle 

• Survey: ~1mrad 

• Idea: Use elastic scattering on 

different target materials 

 

• Data taking: Carbon foil in LHe, 

or CH2 foil 

• Two elastic peak took at the 

same time 

• The accuracy to determine this 

difference is <50KeV -> 

<0.5mrad 

39 Jixie Zhang, UVA                    SPIN2016 



Matrix Calibration 

• Calibrate the angle and momentum matrix elements: 

• Use carbon foil target and point beam 

• Use sieve slit to get the real scattering angle from geometry 

• Angle: Fit with data which we already know the real scattering 

angle 

• Momentum: Use the real scattering angle to calculate elastic 

scattering momentum of carbon target   

Septa 

Target Sieve slit 
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After Calibration Before Calibration 

Resolution: 1.6mrad (RMS) 

Matrix Calibration: Angle 
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LHRS 
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Before Calibration 

After Calibration 

Relative momentum 

Relative momentum 

Matrix Calibration: Momentum 
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LHRS 
RMS: 1.5x10-4 



Matrix Calibration: Angle 

After Calibration Before Calibration 

Resolution: 1.6mrad (RMS) 
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RHRS 
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Matrix Calibration: Momentum 
Before Calibration 

After Calibration 

Relative momentum 

Relative momentum 
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RHRS 

RMS: 1.7x10-4 



Optics Study with Target Field 
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• Recalibrate the angle matrix elements: 

• Start with the matrix without target field 

• To fit the matrix element, need to know the effective theta and phi angle 

• What we know is reaction point and the coordinate of the sieve hole 

• Trace the scatted electrons with different initial angles and select out 

the trajectory which goes though the sieve hole 

Sieve 

Reaction 
Point Beam 

Hole 
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Optics Study with Target Field 

• Reconstruct the scattering angle: 

• Use the HRS matrix to get the effective target variables 

• Project the effective target variables to sieve slit (red dot line) 

• Use the simulation package to calculate the trajectory of the 

scattered electron (red solid line), which will tell us the real 

scattering angle 
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