The Generalized GDH Sum Rule: Measuring the Neutron and ³He Spin Structure at Low Q²

Chao Peng (Duke University)

For the JLab Hall A and E97-110 Collaborations

September 26, 2016

22nd International Spin Symposium

Outline

- Polarized Inclusive Scattering on Nucleon targets
- Generalized GDH Sum Rule
- Experimental Progress at low Q² (0.02 GeV²)
- Preliminary Results from JLab E97-110

Polarized Inclusive Scattering

Cross Sections

$$\sigma_0 = \sigma_{\text{Mott}} \left[\alpha F_1(x, Q^2) + \beta F_2(x, Q^2) + \gamma g_1(x, Q^2) + \delta g_2(x, Q^2) \right]$$

- σ_0 : probability of an interaction between incident electron and nucleon target
- lacktriangledown σ_{Mott} : structure-less (point like particles) cross section
- Structure functions:
 - Spin averaged F₁ and F₂
 - Spin dependent g₁ and g₂

Spin-dependent Structure functions

- Measuring spin-dependent structure functions
 - Asymmetry measurement
 - Electron and target spins are parallel (anti-parallel) and perpendicular

$$\Delta \sigma^{\parallel} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'}{E} [(E + E'cos\theta)g_1 - 2Mxg_2]$$

$$\Delta \sigma^{\perp} = \frac{4\alpha^2}{M\nu Q^2} \frac{E'^2}{E} sin\theta \left[\mathbf{g_1} + \frac{2E}{\nu} \mathbf{g_2} \right]$$

GDH Sum Rule

Gerasimov-Drell-Hearn (GDH) Sum Rule

$$I_{\text{GDH}} = \int_{\nu_{\text{th}}}^{\infty} \frac{\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu)}{\nu} d\nu = -2\pi^2 \alpha \left(\frac{\kappa}{M}\right)^2$$

- Circularly polarized photons on a longitudinally polarized target with 1/2 spin
- Relate the photo-absorption cross sections to the anomalous magnetic moment
- Derived from general principles

GDH Measurements

	M[GeV]	Spin	κ	$I_{\mathrm{GDH}}[\mu \; b]$
Proton	0.938	$\frac{1}{2}$	1.79	-204.8
Neutron	0.940	$\frac{1}{2}$	-1.91	-233.2
Deuteron	1.876	1	-0.14	-0.65
Helium-3	2.809	$\frac{1}{2}$	-8.38	-498.0

- Proton, verified: Mainz, Bonn, LEGS
- Neutron, in progress: Mainz, Bonn, LEGS, HIGS
- Measurements on Deuteron and ³He

Generalized GDH Integral

Generalized for virtual photon

$$I_{GDH}(Q^2 \neq 0) = \frac{16\pi^2\alpha}{Q^2} \int_0^{x_{th}} g_1(x, Q^2) dx = \frac{16\pi^2\alpha}{Q^2} \Gamma_1 = 2\pi^2\alpha S_1(0, Q^2)$$

Ji and Osborne, J. Phys. G27, 127 (2001)

- **Expressed** as the integral of $g_1(x, Q^2)$
- Related to the forward spin-dependent Compton amplitude $S_1(0,Q^2)$
- $ightharpoonup Q^2 = 0$, GDH sum rule
- $ightharpoonup Q^2
 ightharpoonup \infty$, Bjorken sum rule

First Moment of g₁

■ First Moment of g₁

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) dx$$

- Connects to the total spin carried by the quarks
- Relates to the GDH sum rule as $Q^2 \rightarrow 0$
- Bjorken Sum Rule

$$\Gamma_1^P(Q^2) - \Gamma_1^N(Q^2) = \frac{g_A}{6} + O(\alpha_S(Q^2)) + O(\frac{1}{Q^2})$$

- g_A, nucleon axial charge
- Consistent with experimental result in 10%

Importance of Generalized GDH Sum Rule

- Constrained at the two ends
- Calculable at any Q², can be tested by experiments over the measurable range
- Study the transition region from non-perturbative to perturbative QCD

Experimental progress

Observable	H target	D target	³ He target
$g_1, g_2, \Gamma_1 \& \Gamma_2$	SLAC	SLAC	SLAC
at high ${\cal Q}^2$			JLAB E97-117
	JLAB SANE		JLAB E01-012
			JLAB E06-014
g_1 & Γ_1 at high Q^2	SMC	SMC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
Γ_1 & Γ_2 at low Q^2	JLab RSS	JLab RSS	JLab E94-010
			JLab E97-103
Γ_1 at low Q^2	SLAC	SLAC	
	HERMES	HERMES	HERMES
	JLAB EG1	JLAB EG1	
$\Gamma_1,Q^2<<1~{\sf GeV}^2$	JLab EG4	JLab EG4	JLab E97-110
$\Gamma_2,Q^2<<1~{\sf GeV}^2$	JLab E08-027		JLab E97-110

Other related JLab experiments are covered in the talks from V. Burkert, A. Deur, K. Slifer and etc.

Neutron and ³He Results

MAID: phenomenological model with only resonance contributions

Neutron Spin Polarizabilities

$$\gamma_0 = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right]$$

$$\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 + g_2 \right]$$

Failure of χPT calculations?

Heavy Baryon χPT Calculation

Kao, Spitzenberg, Vanderhaeghen PRD 67:016001(2003)

Relativistic Baryon xPT

Bernard, Hemmert, Meissner PRD 67:076008(2003)

Theoretical Developments

Theoretical Developments

E97-110 at Jefferson Lab

- Inclusive measurement, ${}^{3}He(\overrightarrow{e},e')X$
 - Scattering angles: 6° and 9°
 - Polarized electron beam, P_{beam} = 75%
 - Polarized ³He target, P_{target} = 40%
- Measured the differences of polarized cross sections
 - Parallel (anti-parallel)
 - Perpendicular

Spokespersons: J.-P. Chen, A. Deur, F. Garibaldi Graduate students: J. Singh, V. Sulkosky, J. Yuan, C. Peng, N. Ton

Kinematic Coverage

Preliminary Result

First moment of g₁

Neutron Spin Polarizabilities

$$\gamma_0 = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right] \qquad \delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 + g_2 \right]$$

$$\delta_{LT} = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 + g_2 \right]$$

Summary

- Generalized GDH sum rule is useful to study the transition region
- New high precision data at low Q²
 - E97-110: g_1 and g_2 on neutron, soon to be published
- Preliminary result for neutron data from E97-110 still indicate a discrepancy with the theoretical calculations
- Acknowledgement
 - Thanks for Vincent Sulkosky providing the plots
 - The work is supported in part by US DOE grant DE-FG02-03ER41231

Thank you