

·····

Spin Dynamics at Jefferson Lab Electron Ion Collider (JLEIC)

Fanglei Lin, D.P. Barber, Y.S. Derbenev, Yu. N. Filatov , A.M. Kondratenko, M.A. Kondratenko, V.S. Morozov, Y. Zhang

SPIN'16, Urbana-Champaign, Sep 25-30 2016

Outline

- Introduction of Jefferson Lab Electron-Ion Collider (JLEIC) design ٩
- **JLEIC** polarization design and simulation 0
 - Ion polarization _
 - **Electron polarization** —
- Summary and Outlook ٩

Electron Ion Collider

Recommendations in NSAC LRP 2015:

- 1. Continue existing projects: CEBAF, FRIB, RHIC.
- 2. "...a U.S.-led ton-scale neutrinoless double beta decay experiment"
- 3. "...a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB"
- 4. "...small-scale and mid-scale projects and initiatives that enable forefront research at universities and laboratories"

EIC Community White Paper arXiv:1212.1701

- Highly polarized (~ 70%) electron and nucleon beams
- Ion beams from deuteron to the heaviest nuclei (uranium or lead)
- Variable center of mass energies from $\sim 20-\sim\!100$ GeV, upgradable to $\sim\!\!140$ GeV
- High collision luminosity $\sim 10^{33-34} \text{ cm}^{-2} \text{s}^{-1}$

JSA

Science

• Possibilities of having more than one interaction region

3

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

JLEIC Baseline Design

arXiv:1209.0757

U.S. DEPARTMENT OF Office of Science

S

- Electron complex
 - CEBAF
 - Electron collider ring
- Ion complex
 - Ion source
 - Linac
 - **Booster**
 - Ion collider ring

Jefferson Lab

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 4

JLEIC Strategy for High Luminosity and Polarization

High Luminosity

 Based on <u>high bunch repetition</u> <u>rate CW colliding beams</u>

$$L = f \frac{n_1 n_2}{4\pi \sigma_x^* \sigma_y^*} \sim f \frac{n_1 n_2}{\epsilon \beta_y^*}$$

KEK-B reached > 2x10³⁴ /cm²/s

JSA

Science

High Polarization

- Collider rings are in a figure-8 shape
 - \rightarrow critical advantages for both beams
- Spin precessions in the left & right parts of the ring are <u>exactly cancelled</u>
- Net spin precession (*spin tune*) is zero, thus <u>energy independent</u>
- Spin can be <u>controlled</u> & <u>stabilized</u> by small solenoids or other compact spin rotators

Excellent Detector integration

Interaction region is designed to support

- Full acceptance detection (including forward tagging)
- Low detector background

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 5 Jefferson Lab

e-p Collision Luminosity

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 6

ENERGY

Office of Science

Jefferson Lab

Spin Motion in Figure-8 Ring

Properties of a figure-8 structure

Science

- Spin precessions in the two arcs are exactly cancelled
- In an ideal structure (without perturbations) all solutions are periodic
- The spin tune is zero independent of energy
- A figure-8 ring provides unique capabilities for polarization control
 - It allows for stabilization and control of the polarization by small field integrals
 - Spin rotators are compact, easily rampable and give no orbit distortion
 - It eliminates depolarization problem during acceleration
 - Spin tune remains constant for all ion species avoiding spin resonance crossing
 - It provides efficient polarization control of any particles including deuterons
 - It is currently the only practical way to accommodate polarized deuterons
 - Electron quantum depolarization is reduced due to energy independent spin tune
 - It allows for a spin flipping system with a spin reversal time of ~1 s
 - It makes possible ultra-high precision experiments with polarized beams

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Zero-Integer Spin Resonance & Spin Stability Criterion

• The total zero-integer spin resonance strength

 $w_0 = w_{\rm coherent} + w_{\rm emittance}, \qquad w_{\rm emittance} << w_{\rm coherent}.$ is composed of

- coherent part $W_{coherent}$ due to closed orbit excursions
- incoherent part $w_{\text{emittance}}$ due to transverse and longitudinal emittances
- The coherent part $|w_0^{(k)}| = \alpha_k |\gamma G F(\theta_k)|$

where $F(\theta)$ is the spin response function, arises due to radial fields from

- dipole roll
$$\alpha_k = \alpha_{orb} \Delta \alpha$$

– vertical quadrupole misalignments $\alpha_k = \frac{1}{2}$

$$\alpha_{k} = \frac{\partial B_{y}}{\partial x} \frac{L}{B\rho} \Delta y$$

- Spin stability criterion
 - the spin tune induced by a spin rotator must significantly exceed the strength of the zero-integer spin resonance $V >> W_0$

Ion Polarization Requirements

• Major JLEIC ion complex components

- Polarization design requirements
 - High polarization (~80%) of protons and light ions (d, ³He⁺⁺, and possibly ⁶Li⁺⁺⁺)
 - Both longitudinal and transverse polarization orientations available at all IPs
 - Sufficiently long polarization lifetime
 - Spin flipping

Science

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 9

Pre-Acceleration & Spin Matching

- Polarization in Booster stabilized and preserved by a single weak solenoid
 0.6 T·m at 8 GeV/c
 - $v_{d} / v_{p} = 0.003 / 0.01$
- Longitudinal polarization in the straight with the solenoid
- Conventional 8 GeV accelerators require B_{||}L of ~30 Tm for protons and ~100 Tm for deuterons

Spin Dynamics in Booster

- Acceleration in figure-8 booster with transverse quadrupole misalignments
- 0.3 Tm (maximum) spin stabilizing solenoid

• Spin tracking simulation using Zgoubi (developed by F. Meot, BNL)

JSA

Science

11

Jefferson Lab

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Polarization Control in Ion Collider Ring

- 3D spin rotator: control of the radial, vertical, and longitudinal spin components
- Module for control of the radial component (fixed radial orbit bump)

JSA

Science

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

12

J.m

Zero-Integer Spin Resonance in Ion Collider Ring

Coherent part of resonance strength

JSA

Science

ENERGY

- Assuming RMS close orbit distortion of ~200 μm
- Incoherent part of resonance strength
 - Assuming normalized vertical beam emittance of 0.07 μm-rad

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Compensation of Zero-Integer Resonance

- In linear approximation, the zero-integer spin resonance strength is determined by two components of spin perturbation lying in the ring's plane w₀ ≈ w_{coherent} = w_x + i w_z and can be compensated by correcting devices whose spin rotation axis lies in the same plane
- Additional 3D spin rotator can be used to compensate the coherent part of the zero-integer spin resonance strength
- Spin resonance strength after compensation

$$w_0 \sim w_{\text{emittance}} \implies |w_0|_p < 10^{-3}, |w_0|_d < 10^{-5}$$

• 2T × 4m solenoids in the 3D spin rotator allow setting proton spin tune $v_p = 10^{-2}$ and deuteron spin tune $v_d = 10^{-4}$

Spin Dynamics in Ion Collider Ring

60 GeV/c figure-8 ion collider ring with transverse quadrupole misalignments

• Example of vertical proton polarization at IP. The 1st 3D rotator: $v = 10^{-2}$, $n_y=1$. The 2nd 3D rotator is used for compensation of coherent part of the zero-integer spin resonance strength

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

ENERGY Science

15

Jefferson Lab

Spin Flip

- Adiabaticity criterion: spin reversal time must be much longer than spin precession period
- $\Rightarrow \tau_{flip} >> 1$ ms for protons and 0.1 s for deuterons

JSA

Science

• Vertical (h_y) & longitudinal (h_z) spin field components as set by the spin rotator vs time \Rightarrow Spin tune vs time (changes due to piece-wise linear shape)

• Vertical & longitudinal components of proton polarization vs time at 100 GeV/c Protons: S_v -green, S_z -red.

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 16

Electron Polarization Requirements

Major JLEIC electron complex components

- Polarization design requirements
 - Electron polarization of 70% or above with sufficiently long lifetime
 - Longitudinal polarization at IP(s)
 - Spin flipping

ENERGY Science

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Electron Polarization Strategies

- Highly vertically polarized electron beams are injected from CEBAF ٥
 - avoid spin decoherence, simplify spin transport from CEBAF to MEIC, alleviate the detector background
- Polarization is designed to be vertical in the JLEIC arc to avoid spin diffusion and longitudinal at collision points using spin rotators
- Universal spin rotator (fixed orbit) rotates the electron polarization from 3 to 12GeV
- Desired spin flipping is implemented by changing the source polarization
- Polarization configuration with figure-8 geometry removes electron spin tune energy dependence
 - Significantly suppress the synchrotron sideband resonance

Science

- Continuous injection of electron bunch trains from the CEBAF is considered to
 - preserve and/or replenish the electron polarization, especially at higher energies
- Spin matching in some key regions is considered to further improve polarization lifetime
- Compton polarimeter is considered to measure the electron polarization
 - Two long opposite polarized bunch trains (instead of alternate polarization between bunches) simplify the Compton polarimetry

Universal Spin Rotator (USR)

• Parameters of USR for JLEIC

E	Solenc	oid 1	Arc Dipole 1	Solen	oid 2	Arc Dipole 2
	Spin Rotation	BDL	Spin Rotation	Spin Rotation	BDL	Spin Rotation
GeV	rad	T∙m	rad	rad	T∙m	rad
3	π/2	15.7	π/3	0	0	π/6
4.5	π/4	11.8	π/2	π/2	23.6	π/4
6	0.62	12.3	2π/3	1.91	38.2	π/3
9	π/6	15.7	π	2π/3	62.8	π/2
12	0.62	24.6	4π/3	1.91	76.4	2π/3

Solenoid decoupling & Lattice function

ENERGY Office of Science

F. Lin et al., SPIN'2016, Urbar Champaign, Sep 25-30 2016

Jefferson Lab

Electron Polarization Configuration

- Unchanged polarization in two arcs by having opposite solenoid field directions in two spin rotators in the same long straight section
 - figure-8 removes spin tune energy dependence and reduces the synchrotron sideband resonances
 - First order spin perturbation in the solenoids for off-momentum particles vanishes with opposite longitudinal solenoid fields in the pair of spin rotators in the same long straight
 - Sokolov-Ternov self-polarization process has a net depolarization effect, but the polarization lifetime is still large with highly-polarized injected electron beams
 - Two polarization states coexist in the collider ring and have the same polarization degradation

F. Lin et al., SPIN'2016, Urbana Champaign, Sep 25-30 2016

Science

20

Jefferson Lab

Polarization Simulation

Spin tune scan @ 5 GeV

Office of

Science

Fime (hour)

- Longitudinal field spin tuning solenoid is inserted in the straight where the polarization is longitudinal.
- 500 particles Monte-Carlo simulation using SLICKTRACK (developed by D.P. Barber).
- Main field errors, quads vertical misalignment and dipole role, are introduced.

Polarization vs. energy for a HERA Upgrade lattice including the H1 and ZEUS solenoids: comparison of first order calculation (SLIM) and higher order calculations (SITROS).

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Preliminary spin tracking

- 10 particles Monte-Carlo simulation using Zgoubi (developed by F. Meot, BNL).
- Initial polarization is longitudinal.
- Perfect machine, no errors.

- Oscillation of spin components is due to the misaligned initial spin direction and invariant spin field.
- This can be experimentally calibrated by adjusting the spin rotator settings.

21

Jefferson Lab

Continuous Injection

- Continuous injection (or top-off injection or trickle injection) has been applied in many modern electron storage ring light sources to maintain a constant beam current, and colliders (such as PEP-II, SuperB) to gain the average luminosity
 - Average luminosity is always near the peak luminosity
 - The collider looks like a "DC" accelerator allowing an improved operational consistency

From John T. Seeman, SLAC-PUB-5933, Sep. 1992

- JLEIC considers the continuous injection of the electron beams to
 - Obtain a high average luminosity
 - Reach a high equilibrium polarization

- Note that
 - If the beam lifetime is shorter than the polarization lifetime, continuous injection maintains the beam current and improves the polarization as well
 - If the beam lifetime is longer than the polarization lifetime, beam lifetime has to been shorten (collimation, scraping, or reduce the dynamic aperture)

Polarization w/o Cont. Injection

 P_{ave}/P_i (%)

U.S. DEPARTMENT OF Office of Science

 $3GeV, \tau_{ini}=12min, \tau_{depol}=66h$ 120 $5GeV, \tau_{ini} = 8min, \tau_{devol} = 8h$ ------ $7GeV, \tau_{ini}=4min, \tau_{depol}=2.2h$ 110 $9GeV, \tau_{inj}=0.8min, \tau_{depol}=0.9h$ $10GeV, \tau_{ini}=0.5min, \tau_{depol}=0.3h$ 100 90 80 ······ 70 **60** 50 100 20 40 60 80 120 *140* 160 0 T_{meas} (min)

Energy (GeV)	τ _{inj} (min)	τ _{opt_meas} (min)	(P _{ave} /P _i) _{max} *
3	12	160	0.94
5	8	60	0.88
7	4	20	0.85
9	0.8	6	0.89
10	0.5	2.5	0.86

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Jefferson Lab

Polarization w Cont. Injection

- Polarization w/ continuous injection $P_{t+\Delta t} = (1 \frac{\Delta N}{N})(P_t + \frac{\Delta P_t}{\Delta t}\Delta t) + \frac{\Delta N}{N}P_0$
- Equilibrium polarization $P_{equ} = P_0 (1 + \frac{T_{rev}I_{ring}}{\tau_{dk}I_{inj}})^{-1}$

 A relatively low average injected beam current of tens-of-nA level can maintain a high equilibrium polarization in the whole energy range.

ENERGY Office of Science F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Summary and Outlook

- JLEIC rings adopt a figure-8 shape for better preservation and control of polarization.
- Both proton and electron polarization schemes have been designed
 - Ion polarization
 - Polarized source (ABPIS) + figure-8 shape rings + weak solenoid for booster and 3D spin rotator for collider ring
 - Electron polarization
 - Polarized CEBAF + figure-8 shape ring + spin rotator + polarization configuration + continuous injection
- Spin tracking numerically validated a figure-8 based polarization control schemes for the whole JLEIC complex.
- Outlook
 - Study of effects of non-linear fields and higher-order spin resonances
 - Evaluation and compensation of the spin effect of the detector solenoid
 - Study of the effect of ion transition energy crossing on the spin
 - Suppression of the beam-beam effect on the spin

Thank You for Your Attention !

Office of

Science

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Back Up

F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Figure-8 vs Racetrack Booster

Figure-8 booster

- Same optics for all polarized and unpolarized ion beams
- Universally good and simple solution for polarization of any particles
- No restriction on the field ramp rate
- Additional arc bending angle of 150°
 - Additional integrated dipole field $BL = B\rho\Delta\theta$ ~ 70 Tm
 - Extra space for quadrupoles, etc.
- Racetrack booster
 - Proton & He³ polarization: OK
 - Requires ~10 m long Siberian snake with ~30 Tm longitudinal field integral
 - Snake field must ramp with energy
 - Different optics for each ion species
 - Allows one to shorten circumference by about 10 m
 - Deuteron polarization: OK with fast ramp
 - Can be handled with care
 - Field ramp rate must be >~1 T/s
 - Betatron tune jumps may be needed to cross spin resonances (this technique changes the optics during jumps)

^{uffice of} cience F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016

Figure-8 vs Racetrack Collider Ring

Figure 8 collider ring

- Same optics for all polarized and unpolarized ion beams
- Good for polarization
- Stable optics during acceleration and spin manipulation
- Additional arc bending angle of 163.4 $^\circ$
 - Additional integrated dipole field BL ~ 950 Tm
 - Extra space for quadrupoles, etc.
- Racetrack collider ring
 - Proton polarization: probably OK but challenging
 - Problem with optics stability especially at low energies
 - Requires two full dipole Siberian snakes with a total field integral of ~50 Tm
 - Figure-8 features can be preserved
 - At low energies of ~8 GeV, the snakes introduce a significant tune shift (~0.2), which must be compensated; the tune shift changes nonlinearly with energy ~γ⁻²

Jefferson Lab

- Deuteron polarization: realistically NO
 - Cannot be preserved unless the ramp time to 100 GeV/c is less than ~1 s
 - At the present acceleration rate, polarization is lost by ~10 GeV/c
 - Even if polarization is preserved during acceleration, there is no guarantee of sufficient polarization lifetime; in fact, it will most likely be short

^{Office of} Science F. Lin et al., SPIN'2016, Urbana-Champaign, Sep 25-30 2016 29