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Center-of-mass energy range: 20 – 145 GeV
Full electron polarization at all energies
Full proton and He-3 polarization with six Siberian snakes
Any polarization direction in electron-hadron collisions:

eRHIC: Electron Ion Collider at BNL
Add an electron accelerator to the existing $2.5B RHIC 

including existing RHIC tunnel, detector buildings and cryo facility

e-

p

80% polarized electrons:
5 – 18 GeV

Pol. light ions (He-3) 
17 - 184  GeV/u

Light ions (d, Si, Cu)
Heavy ions (Au, U)
10 – 110  GeV/u

70% polarized protons 
25 - 275  GeV

protons
electrons

* It is possible to increase RHIC ring energy by 10%

Luminosity:
1033 – 1034 cm-2 s-1



EIC realization at BNL: eRHIC
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Ø Recirculating linac is used to accelerate 
electron to required energy (5-18 GeV)

Ø Several  recirculation passes (red curve) 
are placed in existing RHIC tunnel .

Ø Multiple electron-hadron interaction 
points (IPs) and detectors.

Ø Two design options are being considered: 
Ring-Ring (RR) and Linac-Ring (LR)

• RR: the linac is used as an full energy  
injector in a storage ring (yellow curve)

• LR: yellow curve presents top energy 
recirculation loop; the linac is energy –
recovery linac

Ion ring

Electron storage ring
Ring-Ring

Ion ring
Electron linear 
accelerator 

Linac-Ring
Two considered design options



Electron Polarization in LR eRHIC

Ø 85-90% longitudinally polarized e-beam produced by the e-gun.  (DC gun with strained-
layer super-lattice GaAs-photocathode)

Ø Direction of polarization can be switched by changing helicity of laser photons to create 
complex bunch-by-bunch polarization patterns

Ø Wien spin filter in the injector to transform the polarization from longitudinal to vertical

Ø Linac accelerator -> No depolarizing resonances!

Ø A spin rotator before the interaction region to transform vertical polarization to 
longitudinal one at the interaction point

proton
selectron

s
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Spin dynamics and polarization preservation is straightforward.
Main challenge: high current (50 mA polarized electron source) with at least few 
hours cathode lifetime.



5

Low risk polarized source approach
4 mA polarized electron beam current was demonstrated in dedicated experiments in 
JLab
Although the Jlab gun design is not optimal for high bunch charge mA scale operation: small cathode 
size, no cathode cooling
Low risk eRHIC polarized source employs eight JLab-like guns (possibly with improved 
gun geometry, cathode size and cathode cooling) and combining scheme to produce up 
to 50 mA current at the source exit 

The	10	MeV	injector	includes	the	eight	beam	combining	scheme,	spin	rotator,	buncher and	pre-accelerator.
The	frequency	of	the	combiner	and	phase	of	the	RF	are	listed.

Field	distribution	of	cooper	plate	deflector,	
used	in	combining	scheme

On-going studies (2016-2017):
Finalizing the technicalities of the combining scheme
Detailed 3D simulations of high-charge bunch transport through all injector 
components
Experimental studies of single cathode lifetime dependencies (using a 
Gatling gun prototype)
Measurements of surface charge limit for SL cathodes using cathode 
preparation system.
Building a gun prototype

20 MeV pre-acceleratorBuncher cavities4.65 MHz

2.33 MHz
1.17  MHz
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E. Wang’s presentation on the e-source R&D on Wednesday



Achieving high polarization in the Ring-Ring eRHIC
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Maximum*achieved*polariza(on*in*
electron*rings*

Spin-polarized charged particle beams 2243

Figure 68. Polarization level at LEP after compensation of the spin rotations in the detector
solenoids (procedure SOLSPIN) and harmonic spin matching (HSM). Courtesy of Wenninger
(private communication) and CERN.

Figure 69. The maximum attained asymptotic polarization levels at different high-energy
e+e− storage rings, with and without harmonic spin matching. Courtesy of Wenninger (private
communication) and CERN.

31.8. Maximum attained polarization

We remarked earlier, in section 28, that the maximum achievable radiative polarization in a
storage ring roughly follows the rule

P ≃ PST

1 + (αE)2
. (31.7)

This formula assumes first-order perturbation theory in the orbital amplitudes, and that
the major perturbation is due to motion in the quadrupoles, but we have seen that these
are reasonable approximations, even for LEP at 45.6 GeV. A comparison of the maximum
measured transverse polarizations in various storage rings is shown in figure 69. As can also

Electron polarization levels achieved in various electron storage rings
J.Wenninger, as referred in  S.R. Mane, Yu. M. Shatunov and K. Yokoya, 
Report on Progress in Physics 68 1997 (2005).

The accelerator technology to achieve high polarization 
at high energies includes:
• highly efficient orbit correction, 
• beam-based alignment of Beam Position Monitors 

relative to quadrupole field centers
• harmonic spin matching 
• well controlled betatron coupling 
• spin matching of spin rotator insertion

D.P. Barber, et al., Phys. Lett. 3434B 436 (1995).  
R. Assmann et al., EPAC’94, London, p.932 (1994).  

eRHIC storage ring energy range: 5-18 GeV

eRHIC



eRHIC RR polarization

Ø Circulating electron beam contains both 
bunches with the polarization up and 
bunches with the polarization down.

Ø ST process effectively depolarizes bunches 
with initial ‘up’ polarization. 

Ø Replacing single bunches with 1 Hz rate is 
planned to maintain high polarization level
~6 min to replace all circulating bunches

Ø The full energy injector: a recirculating 
linac operating in pulsed mode

(a rapid cycling synchrotron with highly symmetric 
structure is also considered, V.Ranjbar’s talk)

22nd International Spin Physics Symposium

 1000

 10000

 100000

 1e+06

 1e+07

 4  6  8  10  12  14  16  18  20

ta
u 

[s
ec

]

energy [GeV]

Sokolov-Ternov polarization time in the eRHIC 
electron storage ring as a function of energy.



Spin rotator scheme: the same for LR and RR

Spin Rotator consideration:
• Must operate in the whole energy range: from 5 

to 18 GeV
• Helical or normal dipole magnet rotator: very 

large orbit excursions
• Practical solution: Interleaved solenoids and 

dipole bends
• Similar approach as  for the JLEIC rotator.

rot1
j1

rot3
j2

rot4
j1

rot2
j2

bend1
y1

bend2
y2

bend1
y2bend1

y1

sold
jd

Basic lattice requirements to the rotator insertions:
• Betatron coupling is compensated around each solenoid
• Vertical dispersion is constrained to inside the rotators
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Spin rotation angles

rot1
j1

rot2
j2

bend2
y2= n0q2

sold
jd bend1

y1= n0q1

n0= ga
q1,2- bending angles

tan𝜑% = 	±
cos𝜓-

− cos 𝜓% + 𝜓- cos 𝜓% − 𝜓-
�

cos 𝜑- = cot 𝜓%	 cot 𝜓-

Connection between solenoidal rotation angles and dipole bend spin rotation angles
to convert vertical spin to longitudinal:
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Spin rotator bend angle choice
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For 5 GeV rotator min required  𝜃- + 𝜃% = 138.4 mrad
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Energy range conditions:

The whole energy range (5-18 GeV) can be covered at following choices q1 and q2:
1) q1 = 46.1 mrad, q2 = 92.2 mrad  or
2) q1 = 92.2 mrad, q2 = 46.1 mrad  (this one demands ~twice larger solenoid field)
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where Er = 0.441 GeV



Spin rotator parameters
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Provides longitudinal polarization in IP throughout the whole energy range.

18 GeV 5 GeV

1st	rotator	solenoid	field	integral	,	T*m 33.2 26.1
2nd	rotator	solenoid	field	integral	,	T*m 121.9 0
1st	bend	angle,	mrad 46.1
2nd	bend	angle,	mrad 92.2
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• Spin rotator insertions locally decoupled.
• No vertical dispersion leaks to outside of the rotator areas.
• No any machine errors.
• No specific spin matching done

Polarization relaxation time vs energy

Depolarization caused by the rotators in the RR design
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Average polarization (assuming 6min re-fill time)
over all bunches  having  initial polarization - 85%

Spin matching is absolutely required above 14.5 GeV to achieve 
the average polarization 70% or more
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Yellow – without rotators
Blue- with rotators



Polarization evolution
Synchrotron radiation introduces both polarizing and depolarizing effects 
which lead to the equilibrium polarization:

Derbenev-Kondratenko:
(1973)

defines strength of depolarization
and kinetic polarization

taken at const x, x’, y, y’

22nd International Spin Physics Symposium



Analytical expressions for F5

One can write analytical expressions for two different parts of F5:

resonantly increases when spin tune approaching integer 
(more exactly integer +- synchrotron tune)

resonantly increases when spin tune approaching betatron tune

Spin matching approach: Nullify these integrals over the rotator insertion to get
F5 = 0 in the arcs 

In spin response formalism the depolarizing vector d is presented by F5 component
of spin response function set. (V. Ptitsyn, Yu. M. Shatunov, S.R. Mane,  NIM A608, p.225  (2009)).
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F3 via (see Eq. (3.7b))

F5
0 ¼ Kz n0 þ

G
g0

! "
Zz # F1

# $
þ Kx n0 þ

G
g0

! "
Zx þ F3

# $

# ð1þ GÞKyZy: ð3:15Þ

We next present one-turn integrals over lattice functions, to
evaluate F5. For uncoupled motion, the answer is similar to the so-
called ‘‘Chao–Yokoya spin integrals’’ [20] (a more accessible
reference is Ref. [21]), but the expressions below treat full
coupling (but a synchrotron tune of zero). We return to Eq. (3.4)
and express the orbital motion as a sum of (four-dimensional)
orbital eigenmodes and a dispersion term. We write ~X to denote a
four-component column vector:

~X &FAþDps: ð3:16Þ

The notation is as follows. First D denotes dispersion terms

D ¼

Dx

Dx
0 #

1
2

KyDz

Dz

Dz
0 þ

1
2

KyDx

0

BBBBBB@

1

CCCCCCA
ð3:17Þ

where Dx and Dz are the horizontal and vertical dispersion
functions. The Aj are complex amplitudes depending on initial
conditions (A2 ¼ A'1 and A4 ¼ A'3) and F is a matrix composed of
the orbital eigenmodes

F ¼

f1x f '1x f2x f '2x

h1x h'1x h2x h'2x

f1z f '1z f2z f '2z

h1z h'1z h2z h'2z

0

BBBB@

1

CCCCA
: ð3:18Þ

For example, for an uncoupled ring f1x ¼
ffiffiffiffiffiffiffiffiffiffiffi
bx=R

p
eifz and f1z ¼ 0,

where bx is the horizontal beta function and dfx=dy ¼ R=bx.
In the vertical plane (also for an uncoupled ring) we encountered
f2z as fz in Eq. (3.14). The normalization is (restricting S to a 4( 4
matrix)

FySF ¼

2i

#2i

2i

#2i

0

BBB@

1

CCCA: ð3:19Þ

We subdivide the function F5 into two terms F5 ¼ F5g þ F5b. Here
F5g is the contribution from the direct dependence of n on
the particle energy (i.e. ps) and F5b is due to the excitation of
betatron oscillations due to the emission of quanta. Then
from Eq. (3.4)

C0 ¼ ~W
T
ðFAþDpsÞ þW6ps: ð3:20Þ

Here ~W denotes the first four components of W. We have
dropped the term in w0 because it does not contribute to
longitudinal momentum recoils. To calculate F5b, note that under
the assumption of a ‘‘point’’ photon emission, the total x and z etc.,
do not change and so (assuming ultrarelativistic motion)

FdA ¼ #D
dg
g0

ð3:21aÞ

@A
@ps
¼ #F#1D: ð3:21bÞ

Then solving for C and calculating @C=@ps yields

F5gðy0Þ ¼
1

ei2pn # 1

Z y0þ2p

y0

ð ~W
T
ðyÞDðyÞ þW6ðyÞÞdy ð3:22aÞ

F5bðy0Þ ¼ #
X4

j¼1

ðF#1DÞjðy0Þ
ei2pðnþnjÞ # 1

Z y0þ2p

y0

ð ~W
T
FÞjðyÞdy: ð3:22bÞ

In the approximation of uncoupled motion, F5g is the analog of the
Chao-Yokoya spin integral for the synchrotron mode (in the limit
of a synchrotron tune of zero), and F5b is the analog of the spin
integrals over the betatron modes [20,21]. For ease of reference,
we list the relevant components of W below (see Eq. (3.9), and we
drop terms in KxKy and KyKz)

W1 ¼ ð1þ GÞKx
0Zy þ

1
2n0ð1þ GÞK2

yZz ð3:23aÞ

W2 ¼ ðn2
0 þ GÞKxZy # n0ð1þ GÞKyZx ð3:23bÞ

W3 ¼ ð1þ GÞKz
0Zy #

1
2n0ð1þ GÞK2

yZx ð3:23cÞ

W4 ¼ ðn2
0 þ GÞKzZy # n0ð1þ GÞKyZz ð3:23dÞ

W6 ¼ n0 þ
G
g0

! "
ðKxZx þ KzZzÞ # ð1þ GÞKyZy: ð3:23eÞ

Recall that W5 ¼ #P6 ¼ 0, and for ultrarelativistic motion it is
usually acceptable to neglect the term in G=g0 in W6.

4. Polarization formulas

In this section we display the Froissart–Stora [15] and
Derbenev–Kondratenko [16] formulas, and in the next section
we present expressions to calculate the spin resonance strengths
for use in the above formulas. For nonradiative polarization,
Froissart and Stora [15] solved the spin precession equation of
motion in a planar ring, for the passage across a single isolated
resonance. The beam energy is varied at a uniform rate so that
Gg ¼ nres þ ay, where nres is the resonant spin tune, a is a constant,
and the value of Gg is increased from far below to far above the
resonance. Froissart and Stora calculated the final asymptotic
vertical polarization, for an initially vertically polarized beam, and
derived what is now called the Froissart–Stora formula

Pf

Pi
¼ 2e#pjej

2=ð2jajÞ # 1: ð4:1Þ

Here Pi and Pf are the initial and final vertical polarizations,
respectively. The value of jej is called the resonance strength. If
jej2=jajb1, then Pf =PiC# 1, i.e. the polarization direction reverses
with negligible decrease of magnitude of the asymptotic polariza-
tion. This is called ‘‘adiabatic spin–flip’’. A spin flipper is operated
so as to induce adiabatic spin–flip.

Using angle brackets to denote the secular component of a
function, and treating only uncoupled vertical orbital motion, the
resonance strength is given by [22]

e ¼ /½ðGgþ 1Þz00 þ iðGg# GÞKzz0 # ið1þ GÞKz
0z*eiGgYS: ð4:2Þ

We set Gg ¼ nres in the above expression. The term in Kz
0 is

essentially a fringe field term from the edges of the horizontal
dipoles. The above integral coincides (up to differences of
notation) with that given by Courant and Ruth [22]. (A version
of Eq. (4.2) without fringe fields and approximating G51, which is
valid for leptons, was also given in Ref. [2].) Courant and Ruth
considered resonances where z was due to closed orbit imperfec-
tions (‘‘imperfection’’ resonances) or free vertical betatron
oscillations (‘‘intrinsic’’ resonances), but they did not treat spin
flippers. For a radial field rf dipole spin flipper, Eq. (4.2) is also
applicable, where z denotes the forced vertical betatron oscilla-
tions induced by the spin flipper. For rings of more complicated
topology, the spin response formalism gives a more general

V.I. Ptitsyn et al. / Nuclear Instruments and Methods in Physics Research A 608 (2009) 225–233 229

• is a matrix of orbital motion eigenmodes

• Is a vector incorporating dipole and 
solenoid fields and spin motion eigenvectors

ARTICLE IN PRESS

F3 via (see Eq. (3.7b))

F5
0 ¼ Kz n0 þ

G
g0

! "
Zz # F1

# $
þ Kx n0 þ

G
g0

! "
Zx þ F3

# $

# ð1þ GÞKyZy: ð3:15Þ

We next present one-turn integrals over lattice functions, to
evaluate F5. For uncoupled motion, the answer is similar to the so-
called ‘‘Chao–Yokoya spin integrals’’ [20] (a more accessible
reference is Ref. [21]), but the expressions below treat full
coupling (but a synchrotron tune of zero). We return to Eq. (3.4)
and express the orbital motion as a sum of (four-dimensional)
orbital eigenmodes and a dispersion term. We write ~X to denote a
four-component column vector:

~X &FAþDps: ð3:16Þ

The notation is as follows. First D denotes dispersion terms

D ¼

Dx

Dx
0 #

1
2

KyDz

Dz

Dz
0 þ

1
2

KyDx

0

BBBBBB@

1

CCCCCCA
ð3:17Þ

where Dx and Dz are the horizontal and vertical dispersion
functions. The Aj are complex amplitudes depending on initial
conditions (A2 ¼ A'1 and A4 ¼ A'3) and F is a matrix composed of
the orbital eigenmodes

F ¼

f1x f '1x f2x f '2x

h1x h'1x h2x h'2x

f1z f '1z f2z f '2z

h1z h'1z h2z h'2z

0

BBBB@

1

CCCCA
: ð3:18Þ

For example, for an uncoupled ring f1x ¼
ffiffiffiffiffiffiffiffiffiffiffi
bx=R

p
eifz and f1z ¼ 0,

where bx is the horizontal beta function and dfx=dy ¼ R=bx.
In the vertical plane (also for an uncoupled ring) we encountered
f2z as fz in Eq. (3.14). The normalization is (restricting S to a 4( 4
matrix)

FySF ¼

2i

#2i

2i

#2i

0

BBB@

1

CCCA: ð3:19Þ

We subdivide the function F5 into two terms F5 ¼ F5g þ F5b. Here
F5g is the contribution from the direct dependence of n on
the particle energy (i.e. ps) and F5b is due to the excitation of
betatron oscillations due to the emission of quanta. Then
from Eq. (3.4)

C0 ¼ ~W
T
ðFAþDpsÞ þW6ps: ð3:20Þ

Here ~W denotes the first four components of W. We have
dropped the term in w0 because it does not contribute to
longitudinal momentum recoils. To calculate F5b, note that under
the assumption of a ‘‘point’’ photon emission, the total x and z etc.,
do not change and so (assuming ultrarelativistic motion)

FdA ¼ #D
dg
g0

ð3:21aÞ

@A
@ps
¼ #F#1D: ð3:21bÞ

Then solving for C and calculating @C=@ps yields

F5gðy0Þ ¼
1

ei2pn # 1

Z y0þ2p

y0

ð ~W
T
ðyÞDðyÞ þW6ðyÞÞdy ð3:22aÞ

F5bðy0Þ ¼ #
X4

j¼1

ðF#1DÞjðy0Þ
ei2pðnþnjÞ # 1

Z y0þ2p

y0

ð ~W
T
FÞjðyÞdy: ð3:22bÞ

In the approximation of uncoupled motion, F5g is the analog of the
Chao-Yokoya spin integral for the synchrotron mode (in the limit
of a synchrotron tune of zero), and F5b is the analog of the spin
integrals over the betatron modes [20,21]. For ease of reference,
we list the relevant components of W below (see Eq. (3.9), and we
drop terms in KxKy and KyKz)

W1 ¼ ð1þ GÞKx
0Zy þ

1
2n0ð1þ GÞK2

yZz ð3:23aÞ

W2 ¼ ðn2
0 þ GÞKxZy # n0ð1þ GÞKyZx ð3:23bÞ

W3 ¼ ð1þ GÞKz
0Zy #

1
2n0ð1þ GÞK2

yZx ð3:23cÞ

W4 ¼ ðn2
0 þ GÞKzZy # n0ð1þ GÞKyZz ð3:23dÞ

W6 ¼ n0 þ
G
g0

! "
ðKxZx þ KzZzÞ # ð1þ GÞKyZy: ð3:23eÞ

Recall that W5 ¼ #P6 ¼ 0, and for ultrarelativistic motion it is
usually acceptable to neglect the term in G=g0 in W6.

4. Polarization formulas

In this section we display the Froissart–Stora [15] and
Derbenev–Kondratenko [16] formulas, and in the next section
we present expressions to calculate the spin resonance strengths
for use in the above formulas. For nonradiative polarization,
Froissart and Stora [15] solved the spin precession equation of
motion in a planar ring, for the passage across a single isolated
resonance. The beam energy is varied at a uniform rate so that
Gg ¼ nres þ ay, where nres is the resonant spin tune, a is a constant,
and the value of Gg is increased from far below to far above the
resonance. Froissart and Stora calculated the final asymptotic
vertical polarization, for an initially vertically polarized beam, and
derived what is now called the Froissart–Stora formula

Pf

Pi
¼ 2e#pjej

2=ð2jajÞ # 1: ð4:1Þ

Here Pi and Pf are the initial and final vertical polarizations,
respectively. The value of jej is called the resonance strength. If
jej2=jajb1, then Pf =PiC# 1, i.e. the polarization direction reverses
with negligible decrease of magnitude of the asymptotic polariza-
tion. This is called ‘‘adiabatic spin–flip’’. A spin flipper is operated
so as to induce adiabatic spin–flip.

Using angle brackets to denote the secular component of a
function, and treating only uncoupled vertical orbital motion, the
resonance strength is given by [22]
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We set Gg ¼ nres in the above expression. The term in Kz
0 is

essentially a fringe field term from the edges of the horizontal
dipoles. The above integral coincides (up to differences of
notation) with that given by Courant and Ruth [22]. (A version
of Eq. (4.2) without fringe fields and approximating G51, which is
valid for leptons, was also given in Ref. [2].) Courant and Ruth
considered resonances where z was due to closed orbit imperfec-
tions (‘‘imperfection’’ resonances) or free vertical betatron
oscillations (‘‘intrinsic’’ resonances), but they did not treat spin
flippers. For a radial field rf dipole spin flipper, Eq. (4.2) is also
applicable, where z denotes the forced vertical betatron oscilla-
tions induced by the spin flipper. For rings of more complicated
topology, the spin response formalism gives a more general
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Spin matching conditions for eRHIC rotators
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Figure 5: Optical functions through the rotator insertions 
on one side of the interaction region. The interaction point 
is at the right side of the plot. Blue lines are normal quad-
rupoles, while green lines are skew quads. Blue and light 
green boxes present dipole bending and solenoidal mag-
nets respectively. 

SPIN MATCHING CONDITIONS 
In order to minimize the depolarization effects caused by 
synchrotron radiation induced diffusion the spin matching 
conditions on the rotator optics have to be satisfied.  The 
spin conditions for solenoidal spin rotators can be ob-
tained using general expressions for 01 = (	)*/)( func-
tion [10]. Taking into account that the betatron coupling 
and vertical dispersion are fully compensated for each 
individual rotator insertion, one gets the following condi-
tions to nullify (	)*/)( outside of the rotator area (in the 
bending arcs of the storage ring): 
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Here, ν0 = Gγ and the solenoidal and bending angles ϕi 
and ψi are as defined in Figure 3. Indexes x, s, y corre-
spond correspondingly to horizontal, longitudinal and 
vertical components. D is the dispersion function and f1 is 
the eigen function of betatron motion corresponding to the 
horizontal motion in the arcs (with betatron phase ad-
vance µ1). Its components are:  MDT = UDDVWXY and MDH =
UD+VWXY, where β11 and β12 through the rotator insertion 

are shown in Figure 5. The functions I1,2 are calculated at 
the entrance and exit of the solenoidal magnets of first 
and second rotator, right after or right before the solenoid 

edge. The spin motion in this formulas are described by 
components of spin eigen vector k = l - im, where l and m 
are spin solutions on the design orbit orthogonal to the 
stable spin solution n0 and to each other. 
The spin matching conditions are obviously energy de-
pendent, and the first goal is to satisfy them at 20 GeV 
where, if not taken care of, the depolarization time can be 
reduced at minimum by factor 3 as compared with the 
Sokolov-Ternov time. Work on improving the rotator 
optics for spin matching is underway. We also need to 
include the effect of detector solenoid, including induced 
betatron coupling. 

SPIN PATTERN AND INJECTORS  
To realize arbitrary spin patterns in the electron beam, 

electron bunches with spins up and down need to be in-
jected into the eRHIC electron storage ring. Assuming 
that depolarization caused by fluctuations of synchrotron 
radiation is minimized (that is ( Z*

Z[
≪ 1) the depolariza-

tion rate for bunches with spin “down” is defined by the 
Sokolov-Ternov time constant shown in Figure 1. It gives 
the timescale on which entire bunches (or bunch trains) 
need to be replaced on a regular basis.  

With the shortest Sokolov-Ternov polarization time of 
about 1600 seconds at an energy of 20 GeV, continuously 
replacing single bunches at 1 Hz would take 6 minutes for 
a 360-bunch fill. In reality it is sufficient to only replace 
those bunches with spin “down”, which would only take 3 
minutes. This is sufficiently short compared to the 
Sokolov-Ternov polarization time, so that depolarization 
of those bunches is small even at 20 GeV.  

An injector system capable of providing polarized 
bunches at the required rate can be based either on a re-
circulating linac, which can operate in pulsed mode, or on 
a rapid cycling synchrotron with highly symmetric struc-
ture, which eliminates strong intrinsic resonances [11]. 
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Example of 2 conditions on dispersion function at the exit/entrance 
of the 8 rotator solenoids (for 18 GeV):
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• spin complex eigen-vector k
orthogonal to the stable spin 
solution n0

• D is the dispersion function 
and f1 is the eigen mode of 
betatron motion corresponding 
to the horizontal motion in the 
arcs 

• n0 = Gg

rot: j=1,2,3,4 bends: j=1,2,3,4



Ongoing eRHIC RR polarization work

1. Optimizing spin rotators insertion to fully satisfy the spin 
matching conditions at least at high electron energies.

2. Spin simulations with misalignment and magnet errors, 
including synchrotron motion.

3. Depolarizing effect of detector solenoid. Betatron 
coupling compensation for detector solenoid.
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eRHIC, polarized protons 
• RHIC: only polarized proton collider in the world.  Up to 60% polarization 

achieved in the polarized proton runs at 100 and 255 GeV.

• eRHIC will take favor of  existing hardware in RHIC and in the injector chain 
to accelerate polarized protons up to 275 GeV. 

PHENIX (p)

AGS

LINAC BOOSTER

Pol. H- Source

Solenoid Partial Siberian Snake

200 MeV Polarimeter

Helical Partial 
Siberian Snake

Spin Rotators
(longitudinal polarization)

Siberian Snakes

Spin Rotators
(longitudinal polarization)

Strong AGS Snake

RHIC pC PolarimetersAbsolute Polarimeter (H jet)

STAR (p)

AGS Polarimeters

Spin flipper



Improving proton polarization to fully satisfy eRHIC 
goals

Polarization
OPPIS source ~80%
AGS extraction ~65-70%
RHIC, 255 GeV ~53-58%

Possible developments:
§Working point near integer (allowed by 
recent success of 10 Hz orbit feedback): 

•less number of high-order spin resonances
•reduced strength of those resonances

§Smaller transverse emittance from 
injectors
§Increasing the number of the Snakes
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Polarized 3He+2 for eRHIC
• RHIC Siberian snakes and spin rotators can be used for the spin control, 

with less orbit excursions than with protons.
• More spin resonances. Larger resonance strength.
• Spin dynamics at the acceleration in the injector chain and in RHIC is being 

studied. Increasing the number of Snakes in RHIC to 6 is required.
• Successful acceleration of unpolarized 3He+2 beam  in Booster and AGS has 

been demonstrated

3He+2 p

m, GeV 2.808 0.938

G -4.18 1.79

E/n, GeV 16.2-166.7 24.3-250

g 17.3-177 25.9-266

|Gg | 72.5-744.9 46.5-477.7

Max strength
for protons



Polarized He-3 development facility at RHIC

73 % polarization in the “open” cell

A.Zelenski talk on Tuesday, 
Parallel VII, at 16:40
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Summary
• Polarized beams of electrons, protons and light ions are essential 

component of the future electron-ion collider eRHIC.

• Polarized electron beam challenges are being addressed:
– High average current polarized source for linac-ring scheme.
– Minimizing depolarization in ring-ring scheme. Realizing spin matching 

of complex rotator scheme.

• Polarized proton and light ions beams:
– RHIC: state-of-art technology in place and working well for polarized 

protons. 
– Increasing the number of Snakes (and other developments) are 

expected to improve the polarization up to 70%
– Polarized He3 development is underway: polarized source, polarization 

preservation during the acceleration, increased number of Snakes in 
RHIC.


