## Beam polarization in eRHIC

V. Ptitsyn (BNL)





#### eRHIC: Electron Ion Collider at BNL

Add an electron accelerator to the existing \$2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility



- Center-of-mass energy range: 20 145 GeV
- Full electron polarization at all energies
   Full proton and He-3 polarization with six Siberian snakes
- Any polarization direction in electron-hadron collisions:



<sup>\*</sup> It is possible to increase RHIC ring energy by 10%

### EIC realization at BNL: eRHIC



- Recirculating linac is used to accelerate electron to required energy (5-18 GeV)
- Several recirculation passes (red curve) are placed in existing RHIC tunnel.
- Multiple electron-hadron interaction points (IPs) and detectors.
- Two design options are being considered: Ring-Ring (RR) and Linac-Ring (LR)
- RR: the linac is used as an full energy injector in a storage ring (yellow curve)
- LR: yellow curve presents top energy recirculation loop; the linac is energy recovery linac

Linac-Ring

Two considered design options

Ring-Ring

Electron storage ring

Ion ring







#### Electron Polarization in LR eRHIC



- ➤ 85-90% longitudinally polarized e-beam produced by the e-gun. (DC gun with strained-layer super-lattice GaAs-photocathode)
- Direction of polarization can be switched by changing helicity of laser photons to create complex bunch-by-bunch polarization patterns
- ➤ Wien spin filter in the injector to transform the polarization from longitudinal to vertical
- Linac accelerator -> No depolarizing resonances!
- A spin rotator before the interaction region to transform vertical polarization to longitudinal one at the interaction point

Spin dynamics and polarization preservation is straightforward.

Main challenge: high current (50 mA polarized electron source) with at least few hours cathode lifetime.





#### Low risk polarized source approach

- 4 mA polarized electron beam current was demonstrated in dedicated experiments in JLab
  - Although the Jlab gun design is not optimal for high bunch charge mA scale operation: small cathode size, no cathode cooling
- Low risk eRHIC polarized source employs eight JLab-like guns (possibly with improved gun geometry, cathode size and cathode cooling) and combining scheme to produce up to 50 mA current at the source exit







- On-going studies (2016-2017):
- Finalizing the technicalities of the combining scheme
- Detailed 3D simulations of high-charge bunch transport through all injector components
- Experimental studies of single cathode lifetime dependencies (using a Gatling gun prototype)
- Measurements of surface charge limit for SL cathodes using cathode preparation system.
- Building a gun prototype

#### Achieving high polarization in the Ring-Ring eRHIC

#### Electron polarization levels achieved in various electron storage rings

J.Wenninger, as referred in S.R. Mane, Yu. M. Shatunov and K. Yokoya, Report on Progress in Physics 68 1997 (2005).



### The accelerator technology to achieve high polarization at high energies includes:

- highly efficient orbit correction,
- beam-based alignment of Beam Position Monitors relative to quadrupole field centers
- harmonic spin matching
- well controlled betatron coupling
- spin matching of spin rotator insertion

D.P. Barber, et al., Phys. Lett. 3434B 436 (1995).

R. Assmann et al., EPAC'94, London, p.932 (1994).

eRHIC storage ring energy range: 5-18 GeV





### eRHIC RR polarization

### Sokolov-Ternov polarization time in the eRHIC electron storage ring as a function of energy.



- Circulating electron beam contains both bunches with the polarization up and bunches with the polarization down.
- ST process effectively depolarizes bunches with initial 'up' polarization.
- Replacing single bunches with 1 Hz rate is planned to maintain high polarization level
   6 min to replace all circulating bunches
- The full energy injector: a recirculating linac operating in pulsed mode

  (a rapid cycling synchrotron with highly symmetric structure is also considered, V.Ranjbar's talk)





#### Spin rotator scheme: the same for LR and RR



#### Spin Rotator consideration:

- Must operate in the whole energy range: from 5 to 18 GeV
- Helical or normal dipole magnet rotator: very large orbit excursions
- Practical solution: Interleaved solenoids and dipole bends
- Similar approach as for the JLEIC rotator.

#### Basic lattice requirements to the rotator insertions:

- Betatron coupling is compensated around each solenoid
- Vertical dispersion is constrained to inside the rotators





## Spin rotation angles



Connection between solenoidal rotation angles and dipole bend spin rotation angles to convert vertical spin to longitudinal:

$$\tan \varphi_1 = \pm \frac{\cos \psi_2}{\sqrt{-\cos(\psi_1 + \psi_2)\cos(\psi_1 - \psi_2)}}$$

$$\cos \varphi_2 = \cot \psi_1 \cot \psi_2$$





## Spin rotator bend angle choice

For 5 GeV rotator min required  $\theta_2 + \theta_1 = 138.4$  mrad



Good areas of spin rotation angles in bends:  $\frac{\pi}{2} + \pi n < \psi_2 + \psi_1 < \frac{3\pi}{2} + \pi n$ 

$$\frac{2}{-\frac{\pi}{2} \pm \pi n} < \psi_2 - \psi_1 < \frac{\pi}{2} \pm \pi n$$

**Energy range conditions:** 

$$\left(\frac{\pi}{2} + \pi n\right) \frac{E_r}{\theta_1 + \theta_2} < E < \left(\frac{3\pi}{2} + \pi n\right) \frac{E_r}{\theta_1 + \theta_2}$$

$$\left(-\frac{\pi}{2} \pm \pi n\right) \frac{E_r}{\theta_1 - \theta_2} < E < \left(\frac{\pi}{2} \pm \pi n\right) \frac{E_r}{\theta_1 - \theta_2}$$
where  $E_r = 0.441$  GeV

The whole energy range (5-18 GeV) can be covered at following choices  $\theta_1$  and  $\theta_2$ :

- 1)  $\theta_1 = 46.1 \text{ mrad}, \ \theta_2 = 92.2 \text{ mrad} \text{ or}$
- 2)  $\theta_1 = 92.2 \text{ mrad}$ ,  $\theta_2 = 46.1 \text{ mrad}$  (this one demands ~twice larger solenoid field)





## Spin rotator parameters

Provides longitudinal polarization in IP throughout the whole energy range.





|                                           | 18 GeV | 5 GeV |
|-------------------------------------------|--------|-------|
| 1st rotator solenoid field integral, T*m  | 33.2   | 26.1  |
| 2nd rotator solenoid field integral , T*m | 121.9  | 0     |
| 1st bend angle, mrad                      | 46.1   |       |
| 2nd bend angle, mrad                      | 92.2   |       |



BROOKHAVEN NATIONAL LABORATORY

#### Depolarization caused by the rotators in the RR design

- Spin rotator insertions locally decoupled.
- No vertical dispersion leaks to outside of the rotator areas.
- No any machine errors.
- No specific spin matching done

#### Polarization relaxation time vs energy



Average polarization (assuming 6min re-fill time) over all bunches having initial polarization - 85%



Spin matching is absolutely required above 14.5 GeV to achieve the average polarization 70% or more





### Polarization evolution

Synchrotron radiation introduces both polarizing and depolarizing effects which lead to the equilibrium polarization:

$$P(t) = (P_0 - P_{eq}) e^{-t/\tau} + P_{eq}$$

Derbenev-Kondratenko: (1973)

$$d = \gamma \frac{\partial n}{\partial \gamma}$$
 defines strength of depolarization and kinetic polarization

$$P_{eq} = -\frac{8}{5\sqrt{3}} \frac{\alpha_{-}}{\alpha_{+}}$$

$$\tau^{-1} = \frac{5\sqrt{3}}{8} \frac{\hbar r_{0}}{m} \gamma^{5} \alpha_{+}$$

$$\alpha_{-} = \left\langle \oint \frac{d\theta}{|\rho|^{3}} \hat{\boldsymbol{b}} (\boldsymbol{n} - \boldsymbol{d}) \right\rangle$$

$$\alpha_{+} = \left\langle \oint \frac{d\theta}{|\rho|^{3}} \left[ 1 - \frac{2}{9} (\boldsymbol{n} \hat{\boldsymbol{v}})^{2} + \frac{11}{18} |\boldsymbol{d}|^{2} \right] \right\rangle$$

taken at const x, x', y, y'





## Analytical expressions for F<sub>5</sub>

In spin response formalism the depolarizing vector  $\mathbf{d}$  is presented by  $F_5$  component of spin response function set. (V. Ptitsyn, Yu. M. Shatunov, S.R. Mane, NIM A608, p.225 (2009)).

One can write analytical expressions for two different parts of  $F_5$ :

$$F_{5\gamma}(\theta) = \frac{1}{e^{i2\pi v_{sp}} - 1} \int_{\theta}^{\theta + 2\pi} \left( \tilde{\mathcal{W}}^{T}(\theta) D(\theta) + \mathcal{W}_{6}(\theta) \right) d\theta$$

resonantly increases when spin tune approaching integer (more exactly integer +- synchrotron tune)

•  $\mathscr{F}$  is a matrix of orbital motion eigenmodes

 $F_{5\beta}(\theta) = -\sum_{i=1}^{4} \frac{(\mathcal{F}^{-1}D)_{j}(\theta)}{e^{i2\pi(v_{sp}+v_{j})}-1} \int_{\theta}^{\theta+2\pi} \left(\tilde{\mathcal{W}}^{T}\mathcal{F}\right)_{j}(\theta)d\theta$ 

resonantly incréases when spin tune approaching betatron tune

 W Is a vector incorporating dipole and solenoid fields and spin motion eigenvectors

**Spin matching approach:** Nullify these integrals over the rotator insertion to get  $F_5 = 0$  in the arcs





#### Spin matching conditions for eRHIC rotators

$$v_0 H(D') + \sum_{rot: j=1,2,3,4} \varphi_j k_{sj} - v_0 \sum_{bends: j=1,2,3,4} \psi_j k_{yj} = 0$$

$$H(f_1') = 0 \text{ and } H(f_1'^*) = 0$$
where
$$H(a) = \frac{\varphi_1}{2} (I_{1ent}(a) + I_{1ex}(a)) + \frac{\varphi_2}{2} (I_{2ent}(a) + I_{2ex}(a))$$

- spin complex eigen-vector k orthogonal to the stable spin solution  $n_0$
- D is the dispersion function and  $f_I$  is the eigen mode of betatron motion corresponding to the horizontal motion in the arcs
- $v_0 = G\gamma$

Example of 2 conditions on dispersion function at the exit/entrance of the 8 rotator solenoids (for 18 GeV):

 $I_{n \cdot \rho n t / \rho r}(a) = (k_r a_r + k_v a_v)_{n \cdot \rho n t / \rho r}$ 

$$11.31D'_{x1} + 9.62D'_{x2} - 5.95D'_{y2} - 28.60D'_{x3} - 21.85D'_{y3} - 6.75D'_{x4} + 35.35D'_{y4} - 6.75D'_{x5} + 35.35D'_{y5} + 34.64D'_{x6} - 9.77D'_{y6} - 4.30D'_{x7} - 2.66D'_{y7} - 5.06D'_{x8} = 0.83$$

$$-24.43D'_{x3} + 10.92D'_{x4} + 21.85D'_{y4} + 10.92D'_{x5} + 21.85D'_{y5} + 14.66D'_{x6} - 19.54D'_{y6} - 8.60D'_{x7} - 5.32D'_{y7} - 10.11D'_{x8} = 0.52$$





## Ongoing eRHIC RR polarization work

- Optimizing spin rotators insertion to fully satisfy the spin matching conditions at least at high electron energies.
- 2. Spin simulations with misalignment and magnet errors, including synchrotron motion.

3. Depolarizing effect of detector solenoid. Betatron coupling compensation for detector solenoid.





## eRHIC, polarized protons

- RHIC: only polarized proton collider in the world. Up to 60% polarization achieved in the polarized proton runs at 100 and 255 GeV.
- eRHIC will take favor of existing hardware in RHIC and in the injector chain to accelerate polarized protons up to 275 GeV.







# Improving proton polarization to fully satisfy eRHIC goals

|                | Polarization |
|----------------|--------------|
| OPPIS source   | ~80%         |
| AGS extraction | ~65-70%      |
| RHIC, 255 GeV  | ~53-58%      |

Polarization loss happens after 100 GeV

#### Possible developments:

- •Working point near integer (allowed by recent success of 10 Hz orbit feedback):
  - •less number of high-order spin resonances
  - reduced strength of those resonances
- Smaller transverse emittance from injectors
- Increasing the number of the Snakes







### Polarized <sup>3</sup>He<sup>+2</sup> for eRHIC

- RHIC Siberian snakes and spin rotators can be used for the spin control, with less orbit excursions than with protons.
- More spin resonances. Larger resonance strength.
- Spin dynamics at the acceleration in the injector chain and in RHIC is being studied. Increasing the number of Snakes in RHIC to 6 is required.
- Successful acceleration of unpolarized <sup>3</sup>He<sup>+2</sup> beam in Booster and AGS has been demonstrated



|             | <sup>3</sup> He <sup>+2</sup> | р          |
|-------------|-------------------------------|------------|
| m, GeV      | 2.808                         | 0.938      |
| G           | -4.18                         | 1.79       |
| E/n, GeV    | 16.2-166.7                    | 24.3-250   |
| γ           | 17.3-177                      | 25.9-266   |
| $ G\gamma $ | 72.5-744.9                    | 46.5-477.7 |





### Polarized He-3 development facility at RHIC





73 % polarization in the "open" cell

A.Zelenski talk on Tuesday, Parallel VII, at 16:40



## Summary

- Polarized beams of electrons, protons and light ions are essential component of the future electron-ion collider eRHIC.
- Polarized electron beam challenges are being addressed:
  - High average current polarized source for linac-ring scheme.
  - Minimizing depolarization in ring-ring scheme. Realizing spin matching of complex rotator scheme.
- Polarized proton and light ions beams:
  - RHIC: state-of-art technology in place and working well for polarized protons.
  - Increasing the number of Snakes (and other developments) are expected to improve the polarization up to 70%
  - Polarized He3 development is underway: polarized source, polarization preservation during the acceleration, increased number of Snakes in RHIC.



