Beam polarization in eRHIC

V. Ptitsyn (BNL)

Add an electron accelerator to the existing \$2.5B RHIC including existing RHIC tunnel, detector buildings and cryo facility

80\% polarized electrons: $5-18 \mathrm{GeV}$

70\% polarized protons 25-275 GeV

Light ions (d, Si, Cu) Heavy ions (Au, U) 10-110 GeV/u

Pol. light ions (He-3)
17-184 GeV/u

- Center-of-mass energy range: $20-145 \mathrm{GeV}$
- Full electron polarization at all energies

Full proton and $\mathrm{He}-3$ polarization with six Siberian snakes

- Any polarization direction in electron-hadron collisions:

* It is possible to increase RHIC ring energy by 10%

EIC realization at BNL: eRHIC

$>$ Recirculating linac is used to accelerate electron to required energy ($5-18 \mathrm{GeV}$)
> Several recirculation passes (red curve) are placed in existing RHIC tunnel .
> Multiple electron-hadron interaction points (IPs) and detectors.
$>$ Two design options are being considered: Ring-Ring (RR) and Linac-Ring (LR)

- RR: the linac is used as an full energy injector in a storage ring (yellow curve)
- LR: yellow curve presents top energy recirculation loop; the linac is energy recovery linac

Two considered design options
Ring-Ring
Linac-Ring
Electron storage ring
Ion ring

Electron Polarization in LR eRHIC

$>85-90 \%$ longitudinally polarized e-beam produced by the e-gun. (DC gun with strainedlayer super-lattice GaAs-photocathode)
> Direction of polarization can be switched by changing helicity of laser photons to create complex bunch-by-bunch polarization patterns
$>$ Wien spin filter in the injector to transform the polarization from longitudinal to vertical
$>$ Linac accelerator $->$ No depolarizing resonances!
$>$ A spin rotator before the interaction region to transform vertical polarization to longitudinal one at the interaction point

Spin dynamics and polarization preservation is straightforward. Main challenge: high current (50 mA polarized electron source) with at least few hours cathode lifetime.

Low risk polarized source approach

- 4 mA polarized electron beam current was demonstrated in dedicated experiments in JLab
Although the Jlab gun design is not optimal for high bunch charge mA scale operation: small cathode size, no cathode cooling
- Low risk eRHIC polarized source employs eight JLab-like guns (possibly with improved gun geometry, cathode size and cathode cooling) and combining scheme to produce up to 50 mA current at the source exit

Field distribution of cooper plate deflector,
used in combining scheme

- On-going studies (2016-2017):
- Finalizing the technicalities of the combining scheme
- Detailed 3D simulations of high-charge bunch transport through all injector components
- Experimental studies of single cathode lifetime dependencies (using a Gatling gun prototype)
- Measurements of surface charge limit for SL cathodes using cathode preparation system.
- Building a gun prototype

Achieving high polarization in the Ring-Ring eRHIC

Electron polarization levels achieved in various electron storage rings

 J.Wenninger, as referred in S.R. Mane, Yu. M. Shatunov and K. Yokoya, Report on Progress in Physics 681997 (2005).

The accelerator technology to achieve high polarization at high energies includes:

- highly efficient orbit correction,
- beam-based alignment of Beam Position Monitors relative to quadrupole field centers
- harmonic spin matching
- well controlled betatron coupling
- spin matching of spin rotator insertion
D.P. Barber, et al., Phys. Lett. 3434B 436 (1995).
R. Assmann et al., EPAC'94, London, p. 932 (1994).
eRHIC storage ring energy range: $5-18 \mathrm{GeV}$

eRHIC RR polarization

Sokolov-Ternov polarization time in the eRHIC electron storage ring as a function of energy.

> Circulating electron beam contains both bunches with the polarization up and bunches with the polarization down.
> ST process effectively depolarizes bunches with initial 'up’ polarization.
$>$ Replacing single bunches with 1 Hz rate is planned to maintain high polarization level ~ 6 min to replace all circulating bunches
> The full energy injector: a recirculating linac operating in pulsed mode
(a rapid cycling synchrotron with highly symmetric structure is also considered, V.Ranjbar's talk)

Spin rotator scheme: the same for LR and RR

$\operatorname{rot} 4$
φ_{1}
 bend1
ψ_{2}
bend1 ψ_{1}

rot3
φ_{2}

Spin Rotator consideration:

- Must operate in the whole energy range: from 5 to 18 GeV
- Helical or normal dipole magnet rotator: very large orbit excursions
- Practical solution: Interleaved solenoids and dipole bends
- Similar approach as for the JLEIC rotator.

Basic lattice requirements to the rotator insertions:

- Betatron coupling is compensated around each solenoid
- Vertical dispersion is constrained to inside the rotators

Spin rotation angles

Connection between solenoidal rotation angles and dipole bend spin rotation angles to convert vertical spin to longitudinal:

$$
\tan \varphi_{1}= \pm \frac{\cos \psi_{2}}{\sqrt{-\cos \left(\psi_{1}+\psi_{2}\right) \cos \left(\psi_{1}-\psi_{2}\right)}}
$$

$$
\cos \varphi_{2}=\cot \psi_{1} \cot \psi_{2}
$$

Spin rotator bend angle choice

Energy range conditions:

$$
\begin{aligned}
& \left(\frac{\pi}{2}+\pi n\right) \frac{E_{r}}{\theta_{1}+\theta_{2}}<E<\left(\frac{3 \pi}{2}+\pi n\right) \frac{E_{r}}{\theta_{1}+\theta_{2}} \\
& \left(-\frac{\pi}{2} \pm \pi n\right) \frac{E_{r}}{\theta_{1}-\theta_{2}}<E<\left(\frac{\pi}{2} \pm \pi n\right) \frac{E_{r}}{\theta_{1}-\theta_{2}} \\
& \text { where } E_{r}=0.441 \mathrm{GeV}
\end{aligned}
$$

The whole energy range ($5-18 \mathrm{GeV}$) can be covered at following choices θ_{1} and θ_{2} :

1) $\theta_{1}=46.1 \mathrm{mrad}, \theta_{2}=92.2 \mathrm{mrad}$ or
2) $\theta_{1}=92.2 \mathrm{mrad}, \theta_{2}=46.1 \mathrm{mrad}$ (this one demands \sim twice larger solenoid field)

Spin rotator parameters

Provides longitudinal polarization in IP throughout the whole energy range.

18 GeV	5 GeV	
1st rotator solenoid field integral , $\mathrm{T}^{*} \mathrm{~m}$	33.2	26.1
2nd rotator solenoid field integral , $\mathrm{T}^{*} \mathrm{~m}$	121.9	0
1st bend angle, mrad	46.1	
2nd bend angle, mrad	92.2	

Depolarization caused by the rotators in the RR design

- Spin rotator insertions locally decoupled.
- No vertical dispersion leaks to outside of the rotator areas.
- No any machine errors.
- No specific spin matching done

Polarization relaxation time vs energy

Average polarization (assuming 6min re-fill time) over all bunches having initial polarization-85\%

Spin matching is absolutely required above 14.5 GeV to achieve the average polarization 70\% or more

Polarization evolution

Synchrotron radiation introduces both polarizing and depolarizing effects which lead to the equilibrium polarization:

$$
P(t)=\left(P_{0}-P_{e q}\right) \mathrm{e}^{-t / \tau}+P_{e q}
$$

Derbenev-Kondratenko: (1973)

$$
\begin{gathered}
P_{e q}=-\frac{8}{5 \sqrt{3}} \frac{\alpha_{-}}{\alpha_{+}} \\
\tau^{-1}=\frac{5 \sqrt{3}}{8} \frac{\hbar r_{0}}{m} \gamma^{5} \alpha_{+} \\
\alpha_{-}=\left\langle\oint \frac{d \theta}{|\rho|^{3}} \widehat{\boldsymbol{b}}(\boldsymbol{n}-\boldsymbol{d})\right\rangle \\
\alpha_{+}=\left\langle\oint \frac{d \theta}{|\boldsymbol{\rho}|^{3}}\left[1-\frac{2}{9}(\boldsymbol{n} \widehat{\boldsymbol{v}})^{2}+\frac{11}{18}|\boldsymbol{d}|^{2}\right]\right\rangle
\end{gathered}
$$

$\boldsymbol{d}=\gamma \frac{\partial \boldsymbol{n}}{\partial \gamma}$ defines strength of depolarization
taken at const $x, x^{\prime}, y, y^{\prime}$

Analytical expressions for F_{5}

In spin response formalism the depolarizing vector \mathbf{d} is presented by F_{5} component of spin response function set. (V. Ptitsyn, Yu. M. Shatunov, S.R. Mane, NIM A608, p. 225 (2009)).

One can write analytical expressions for two different parts of F_{5} :
$F_{5_{\gamma}}(\theta)=\frac{1}{e^{i 2 \pi N_{s p}}-1} \int_{\theta}^{\theta+2 \pi}\left(\tilde{\mathcal{W}}^{T}(\theta) D(\theta)+\mathcal{W}_{6}(\theta)\right) d \theta$
resonantly increases when spin tune approaching integer (more exactly integer + - synchrotron tune)

- \mathscr{F}^{ρ} is a matrix of orbital motion eigenmodes
- $\tilde{\mathscr{V}}$ Is a vector incorporating dipole and
$F^{4}\left(\mathcal{F}^{-1} D\right)_{j}(\theta) c^{\theta+2 \pi}\left(\tilde{\sim}^{T} \mathcal{F}\right) \quad$ solenoid fields and spin motion eigenvectors

> Spin matching approach: Nullify these integrals over the rotator insertion to get $F_{5}=0$ in the arcs

Spin matching conditions for eRHIC rotators

$$
\begin{gathered}
v_{0} H\left(D^{\prime}\right)+\sum_{\text {rot: } j=1,2,3,4} \varphi_{j} k_{s j}-v_{0} \sum_{\text {bends: } j=1,2,3,4} \psi_{j} k_{y j}=0 \\
H\left(f_{1}^{\prime}\right)=0 \text { and } H\left(f_{1}^{\prime *}\right)=0
\end{gathered}
$$

where

$$
\begin{gathered}
H(a)=\frac{\varphi_{1}}{2}\left(I_{1 \text { ent }}(a)+I_{1 e x}(a)\right)+\frac{\varphi_{2}}{2}\left(I_{2 \text { ent }}(a)+I_{2 e x}(a)\right) \\
I_{n \text { ent } / \text { ex }}(a)=\left(k_{x} a_{x}+k_{y} a_{y}\right)_{n \text { ent } / \text { ex }}
\end{gathered}
$$

- \quad spin complex eigen-vector \boldsymbol{k} orthogonal to the stable spin solution $\boldsymbol{n}_{\boldsymbol{0}}$
- D is the dispersion function and f_{l} is the eigen mode of betatron motion corresponding to the horizontal motion in the arcs
- $v_{0}=G \gamma$

Example of 2 conditions on dispersion function at the exit/entrance of the 8 rotator solenoids (for 18 GeV):

$$
\begin{aligned}
& 11.31 D_{x 1}^{\prime}+9.62 D_{x 2}^{\prime}-5.95 D_{y 2}^{\prime}-28.60 D_{x 3}^{\prime}-21.85 D_{y 3}^{\prime}-6.75 D_{x 4}^{\prime}+35.35 D_{y 4}^{\prime}-6.75 D_{x 5}^{\prime} \\
& +35.35 D_{y 5}^{\prime}+34.64 D_{x 6}^{\prime}-9.77 D_{y 6}^{\prime}-4.30 D_{x 7}^{\prime}-2.66 D_{y 7}^{\prime}-5.06 D_{x 8}^{\prime}=0.83 \\
& -24.43 D_{x 3}^{\prime}+10.92 D_{x 4}^{\prime}+21.85 D_{y 4}^{\prime}+10.92 D_{x 5}^{\prime}+21.85 D_{y 5}^{\prime}+14.66 D_{x 6}^{\prime}-19.54 D_{y 6}^{\prime} \\
& -8.60 D_{x 7}^{\prime}-5.32 D_{y 7}^{\prime}-10.11 D_{x 8}^{\prime}=0.52
\end{aligned}
$$

Ongoing eRHIC RR polarization work

1. Optimizing spin rotators insertion to fully satisfy the spin matching conditions at least at high electron energies.
2. Spin simulations with misalignment and magnet errors, including synchrotron motion.
3. Depolarizing effect of detector solenoid. Betatron coupling compensation for detector solenoid.

eRHIC, polarized protons

- RHIC: only polarized proton collider in the world. Up to 60\% polarization achieved in the polarized proton runs at 100 and 255 GeV .
- eRHIC will take favor of existing hardware in RHIC and in the injector chain to accelerate polarized protons up to 275 GeV .

Improving proton polarization to fully satisfy eRHIC goals

	Polarization
OPPIS source	$\sim 80 \%$
AGS extraction	$\sim 65-70 \%$
RHIC, 255 GeV	$\sim 53-58 \%$
Polarization loss happens after 100 GeV	

Polarized ${ }^{3} \mathrm{He}^{+2}$ for eRHIC

- RHIC Siberian snakes and spin rotators can be used for the spin control, with less orbit excursions than with protons.
- More spin resonances. Larger resonance strength.
- Spin dynamics at the acceleration in the injector chain and in RHIC is being studied. Increasing the number of Snakes in RHIC to 6 is required.
- Successful acceleration of unpolarized ${ }^{3} \mathrm{He}^{+2}$ beam in Booster and AGS has been demonstrated

	${ }^{3} \mathrm{He}^{+2}$	p
m, GeV	2.808	0.938
G	-4.18	1.79
$E / n, \mathrm{GeV}$	$16.2-166.7$	$24.3-250$
γ	$17.3-177$	$25.9-266$
$\|G \gamma\|$	$72.5-744.9$	$46.5-477.7$

Polarized He-3 development facility at RHIC

73 \% polarization in the "open" cell
A.Zelenski talk on Tuesday, Parallel VII, at 16:40

Summary

- Polarized beams of electrons, protons and light ions are essential component of the future electron-ion collider eRHIC.
- Polarized electron beam challenges are being addressed:
- High average current polarized source for linac-ring scheme.
- Minimizing depolarization in ring-ring scheme. Realizing spin matching of complex rotator scheme.
- Polarized proton and light ions beams:
- RHIC: state-of-art technology in place and working well for polarized protons.
- Increasing the number of Snakes (and other developments) are expected to improve the polarization up to 70%
- Polarized He3 development is underway: polarized source, polarization preservation during the acceleration, increased number of Snakes in RHIC.

