A New Solid Polarized Target for CLAS12

J. Maxwell

for the Jefferson Lab Target Group & the CLAS12 Polarized Target Collaboration

Spin 2016, Urbana-Champaign, IL September 26th, 2016

Outline

- Dynamic Nuclear Polarization Introduction Polarized Targets at JLab
- 2 A New CLAS12 Target
 Challenges and Improvements
 Current Design
- 3 Future Projects

Outline

- Dynamic Nuclear Polarization Introduction Polarized Targets at JLab
- 2 A New CLAS12 Target Challenges and Improvements Current Design
- 3 Future Projects

A Starting Point for a Polarized Target

- How do we control spin degrees of freedom in a target material?
- ullet Try to align spins in a large magnetic field B and low temperature T
- Polarization is then:

$$P = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}} = \tanh\left(\frac{\mu B}{kT}\right)$$

- $\mu_e \approx 660 \mu_p$
 - Electrons at 1 K, 2.5 T: 92%
 - Protons at 1 K, 2.5 T: 0.25%

Dynamic Nuclear Polarization (Solid Effect)

- Take advantage of e-p spin coupling
- Induce "forbidden" transitions with μ-waves to match energy gaps

•
$$\nu_{\mu} = \nu_{\text{EPR}} - \nu_{\text{NMR}}$$

- Relaxation times key
 - $e \approx \text{milliseconds}$
 - $p \approx 10$ s of minutes
- Choose alignment without changing magnetic field
 - $\nu_{\mu} = \nu_{\rm EPR} + \nu_{\rm NMR}$

Dynamic Nuclear Polarization (Solid Effect)

- Take advantage of e-p spin coupling
- Induce "forbidden" transitions with μ-waves to match energy gaps

•
$$\nu_{\mu} = \nu_{\rm EPR} - \nu_{\rm NMR}$$

- Relaxation times key
 - $e \approx \text{milliseconds}$
 - $p \approx$ 10s of minutes
- Choose alignment without changing magnetic field
 - $\nu_{\mu} = \nu_{\rm EPR} + \nu_{\rm NMR}$

Dynamic Nuclear Polarization (Solid Effect)

- Take advantage of e-p spin coupling
- Induce "forbidden" transitions with μ-waves to match energy gaps

•
$$\nu_{\mu} = \nu_{\rm EPR} - \nu_{\rm NMR}$$

- Relaxation times key
 - $e \approx \text{milliseconds}$
 - $p \approx$ 10s of minutes
- Choose alignment without changing magnetic field
 - $\nu_{\mu} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

DNP in Practice

DNP for Electron Scattering Experiments

- Key to usefulness for our purposes is radiation hardiness
 - NH₃, ND₃, LiH, LiD are commonly used
 - Irradiation provides radicals with free electrons to allow polarization
- Allow beam currents from 5 to 100 nA at 1K
 - Anneals after 4 Pe/cm² (8-100 hours)
 - Replacement after 20-30 Pe/cm² (1-8 weeks)

Spin 2016, Sept 26, 2016 J. Maxwell 6

DNP for Electron Scattering Experiments

Polarized Targets at JLab

Polarized Targets at JLab

Polarized Targets at 6 GeV

- Solid Targets in the 6 GeV era: UVa, Hall B, FROST, HDIce
- Hall A DNP:
 - g2p (2012),GEp (2012)
- Hall B DNP:
 - Eg1 (1999), Eg1b (2000), Eg4 (2004), Eg1-DVCS (2008)
- Hall C DNP:
 - GEn (1998), GEn 2 and RSS (2000), SANE (2008)

Hall B DNP Target

Spin 2016, Sept 26, 2016 J. Maxwell 9

Hall B DNP Target

Spin 2016, Sept 26, 2016 J. Maxwell 9

Hall B 12 GeV DNP Target Program

- (E12-06-109) Longitudinal spin structure of the nucleon
- (E12-06-119) DVCS with CLAS at 12 GeV
- (E12-07-107) Spin-orbit correlations with a longitudinally polarized target
- (E12-09-009) Spin-orbit correlations in kaon electroproduction in DIS
- (E12-12-001) EMC effect in spin structure functions
- (C12-15-004) DVCS on the neutron with a longitudinally polarized target

Over 240 PAC days of DNP running, with more to come

Outline

- Dynamic Nuclear Polarization Introduction Polarized Targets at JLab
- 2 A New CLAS12 Target
 Challenges and Improvements
 Current Design
- 3 Future Projects

Hall_B's CLAS12 Upgrade

Hall B's CLAS12 Upgrade

Spin 2016, Sept 26, 2016

DNP in Hall B at 12 GeV

- DNP is a proven technique, what's new?
- Constraints from CLAS12
 - Uniformity of 5T CLAS12 Solenoid
 - Tight space requirements
 - External NMR coils
- Improvements, additions
 - Two target samples at opposing polarizations
 - NMR advancements, remote tuning
 - μ-wave delivery

CLAS12 Solenoid

- 5.0 T Superconducting, Warm-bore Solenoid
 - Provides tracking field
 - Moeller e⁻ shield
- $\Delta B/B < 10^{-4}$ in Ø2.5 x 4 cm
- Magnet not yet delivered, final uniformity unknown
- Small shim magnet may be added to improve uniform field region needed to polarize

CLAS12 Solenoid

- 5.0 T Superconducting, Warm-bore Solenoid
 - Provides tracking field
 - Moeller e⁻ shield
- $\Delta B/B < 10^{-4}$ in Ø2.5 x 4 cm
- Magnet not yet delivered, final uniformity unknown
- Small shim magnet may be added to improve uniform field region needed to polarize

- The "Keep-in" area from CLAS12 is tight!
 - SVT and electronics racks mostly responsible
- Horizontal refrigerator needed
- ullet A standard target insert would need to be \sim 3 m long!
- We are exploring a short insert to "load" like a gun
 - Design by J. Brock, C. Keith
 - NMR and μ -wave infrastructure must be moved off insert

- The "Keep-in" area from CLAS12 is tight!
 - SVT and electronics racks mostly responsible
- Horizontal refrigerator needed
- A standard target insert would need to be \sim 3 m long!
- We are exploring a short insert to "load" like a gun
 - Design by J. Brock, C. Keith
 - NMR and μ -wave infrastructure must be moved off

- The "Keep-in" area from CLAS12 is tight!
 - SVT and electronics racks mostly responsible
- Horizontal refrigerator needed
- A standard target insert would need to be \sim 3 m long!
- We are exploring a short insert to "load" like a gun
 - Design by J. Brock, C. Keith
 - NMR and μ -wave infrastructure must be moved off insert

- The "Keep-in" area from CLAS12 is tight!
 - SVT and electronics racks mostly responsible
- Horizontal refrigerator needed
- A standard target insert would need to be \sim 3 m long!
- We are exploring a short insert to "load" like a gun
 - Design by J. Brock, C. Keith
 - NMR and μ -wave infrastructure must be moved off insert

- The "Keep-in" area from CLAS12 is tight!
 - SVT and electronics racks mostly responsible
- Horizontal refrigerator needed
- A standard target insert would need to be \sim 3 m long!
- We are exploring a short insert to "load" like a gun
 - Design by J. Brock, C. Keith
 - NMR and μ -wave infrastructure must be moved off insert

Trolley? At 1 K?

"Trolley" insert

"Trolley" insert

NMR, μ wave, shim insert

Refrigerator

Inner heat shield

Outer heat shield

Pumping line

Design Walkthrough

Outer vacuum can

Spin 2016, Sept 26, 2016 J. Maxwell 18

Spin 2016, Sept 26, 2016 J. Maxwell 18

J. Maxwell 18

Loading the Target

Spin 2016, Sept 26, 2016

Multiple Samples

• Internal, superconducting coils to adjust the polarizing field for two target samples, using the same μ -wave frequency, and take data on + and - simultaneously.

Multiple Samples

• Internal, superconducting coils to adjust the polarizing field for two target samples, using the same μ -wave frequency, and take data on + and - simultaneously.

Multiple Samples

• Internal, superconducting coils to adjust the polarizing field for two target samples, using the same μ -wave frequency, and take data on + and - simultaneously.

NMR Polarization Measurement

- External coils needed
- Old system works well, but Liverpool Q-meter aging
- Cold passive components
- Remotely tunable varactor diodes
 - A big plus for a two cell setup when adjusting shims
- Watching efforts of other groups: PSTP 2015 Herick, Ohta talks, Spin 2016 Reicherz

NMR Polarization Measurement

- External coils needed
- Old system works well, but Liverpool Q-meter aging
- Cold passive components
- Remotely tunable varactor diodes
 - A big plus for a two cell setup when adjusting shims
- Watching efforts of other groups: PSTP 2015 Herick, Ohta talks, Spin 2016 Reicherz

Court et al, NIM A, 2004.

NMR Polarization Measurement

- External coils needed
- Old system works well, but Liverpool Q-meter aging
- Cold passive components
- Remotely tunable varactor diodes
 - A big plus for a two cell setup when adjusting shims
- Watching efforts of other groups: PSTP 2015 Herick, Ohta talks, Spin 2016 Reicherz

Veenendaal et al, J. Phys E, 1983.

- Waveguide horns traditionally used
- This will be difficult with trolley insert, very tight space available
- Testing reflecting surfaces
 - Heat sensitive paper
 - Thermocouple array
- Simulations of full cavity

- Waveguide horns traditionally used
- This will be difficult with trolley insert, very tight space available
- Testing reflecting surfaces
 - Heat sensitive paper
 - Thermocouple array
- Simulations of full cavity

- Waveguide horns traditionally used
- This will be difficult with trolley insert, very tight space available
- Testing reflecting surfaces
 - Heat sensitive paper
 - Thermocouple array
- Simulations of full cavity

- Waveguide horns traditionally used
- This will be difficult with trolley insert, very tight space available
- Testing reflecting surfaces
 - Heat sensitive paper
 - Thermocouple array
- Simulations of full cavity

Keller. Worcester at UVa

CLAS12 Polarized Target Colloboration

- JLab: CLAS12
 Solenoid
- U of Virginia: Refrigerator
- Old Dominion U: Pumps, NMR
- Christopher
 Newport U:
 Microwaves

Outline

- Dynamic Nuclear Polarization Introduction Polarized Targets at JLab
- 2 A New CLAS12 Target Challenges and Improvements Current Design
- **3** Future Projects

Novel DNP Application: Nuclear Gluonometry

- $\Delta(x,Q^2)$ corresponds to helicity amplitude $A_{+-,-+}$
- Photon helicity flip of two
- Unavailable to bound nucleons or pions in the nucleus
- Virtual ρ or Δ ? Gluons not associated with a nucleon?

- New lattice QCD result for first moment of $\Delta(x,Q^2)$ in a ϕ meson is preliminary, but very promising 1
- Primary challenge of measurement is polarized target or source

¹Detmold, Shanahan, arXiv:1606.04505

A Polarized N Target for Nuclear Gluonometry

- Need a spin>1 nucleus, but this is a nuclear effect
 - Higher atomic number, higher spin more likely to reveal exotic gluonic components
- Deuteron? Expect two nucleons to good approximation
- Something heavier: Li? $\alpha + d$
- Our long experience leads us to N in NH₃
- N polarization due to EST in NH₃ 17% with H is 95%
 - SMC studied polarized N in NH₃ (getting 40%) by moving B field
 - RF Spin transfer to polarize N dynamically?
 - New NMR techniques needed

CLAS12 Polarized Target Collaboration:

- JLab: C. Keith, J. Maxwell, D. Meekins, J. Brock
- CNU: R. Fersch, S. Clark
- ODU: S. Kuhn, V. Lagerquist
- UVa: D. Crabb, D. Day, D. Keller, M. Worcester

Thank you for your attention!

Solid Polarized Target Methods

- Static Polarization: Very high B, Very low T (HDIce)
- Dynamic Polarization: Induce spins flips; high B, mod. T (UVa)
- Frozen Spin: Dynamically polarize, then "freeze" spin at low T, with small B (CERN, Bonn, JLab)

Spin 2016, Sept 26, 2016 J. Maxwell

Solid Polarized Target Methods

- General limitations:
 - ullet Large B field o physically large magnet; access can be occluded
 - Small $T \rightarrow$ large refrigerator; heat load is limited so beam current is limited

Spin 2016, Sept 26, 2016 J. Maxwell

Equal Spin Temperature

Can't ignore interactions between electron spins.

- Extra energy reservoir T_{SS} which is dependent on the Zeeman and lattice energies only through relaxation.
- Microwaves pump the spin-spin reservoir, and thermal mixing transfers to the Zeeman reservoir of proton via flip-flops (2 electron flips and a proton flop)

Commonly Used DNP Materials

Material	Туре	Dopant	Dilution	Polarization	Rad. Res.
Butanol	C_4H_9OH C_4D_9OD	TEMPO	13.5%	90-95%	Moderate
D-Butanol		TEMPO	23.8%	40%	Moderate
Ammonia	14(15)NH ₃	Irrad.	17.6%	90-95%	High
D-Ammonia	ND ₃	Irrad.	30.0%	50%	High
Lithium-H	⁷ LiH	Irrad.	25.0%	90%	Very High
Lithium-D	⁶ LiD	Irrad.	50.0%	55%	Very High

Creating Paramagnetic Centers

DNP requires free electrons to couple to nuclei: radicals doped throughout the material.

- Chemical Dopants
 - Radicals like TEMPO, EHBA-CR(V)
- Irradiation Doping
 - \bullet Create radicals by ionization, for example making $\text{N}\check{H}_2$ from NH_3

