The Neutron Electric Dipole Moment (nEDM) Experiment at the Spallation Neutron Source

Zhaowen Tang for SNS nEDM Collaboration

CP violation

- Sakharov conditions for baryogenesis in the early universe:
 - Baryon number violation
 - C and CP symmetry violation
 - Interactions out of thermal equilibrium
- Experimental evidence of Standard Model CP violation comes from K/B meson decay.
- However, it is not enough to explain the baryon asymmetry that we see today. $n_B n_{\overline{B}}$

SM expected: ~10⁻¹⁸

Observed: ~10⁻¹⁰

 Motivation for search of Beyond the Standard Model mechanisms for CP violation.

nEDM experiments

- Electric dipole moment violates both P and T symmetries
- Great platform for BSM physics
 - SM contribution (CKM δ) to EDM is small. (d_n ~ 10⁻³² e*cm)
- neutron electric dipole moment

$$\hbar\omega = 2\mu_n B \pm 2d_n E$$

- Beam experiments (systematics from v x E)
- Ultracold Neutron (UCN) experiments
 - $V_n < 8 \text{ m/s}$
 - Stored in bottles (<v> = 0)
 - Room Temperature
 - Cryogenic experiment

$$- \delta d_n \sim \frac{1}{|\overrightarrow{E}| T \sqrt{mN_{ucn}}}$$

SNS nEDM Experiment

³He services

Magnetically shielded house

- Goal:
- $-\delta d_n \sim 2-3 \times 10^{-28} e \cdot cm$
- Key features:
- Experiment performed in He II
- Superthermal production of UCN in situ
- Higher electric field is achievable in LHe
- Longer UCN storage time at cryogenic temperatures
- ³He co-magnetometer
- ³He as neutron spin analyzer
- Use of LHe scintillation as method for detection
- Two methods of measurement:
 - Free precession
 - Spin dressing

Golub & Lamoreaux, Phys. Rep. 237, 1 (94)

Superthermal production of UCN

- Downscattering of 8.9 Å neutrons in superfluid ⁴He.
- Upscattering process is suppressed at 0.4 K.
- Achievable density at SNS FNPB => ~150 UCN/c.c.

³He co-magnetometer and spin-analyzer

- ³He has small EDM ~10⁻³² e*cm.
- Only co-magnetometer that will work at 0.4 K
- Long spin relaxation time.
- Large contrast of spin dependent neutron capture cross section for ³He.

$$\sigma_{\uparrow\uparrow} \sim 10000 \text{ barns} \quad \sigma_{\uparrow\downarrow} < 100 \text{ barns} \quad (KE_n = 25.3 \text{ meV})$$

- Gyromagnetic ratios $\gamma_{^3{
 m He}}/\gamma_n=1.1$
- Varying ³He velocity gives handle on systematic errors from geometric phase effect. (K. K. Leung Talk at 11:30)

³He services

 ³He atomic beam source (P = 99.6+/-0.25%, flux= 10¹⁴ atoms)

Heat flush method to control flow of ³He

Recently observed heat flush signal with x(³He)=10⁻⁶

3He gas is delivered to a nozzle held at 1.4 K cooled by a cryocooler

1 m long quadrupole spin-state selector constructed from NdFeB permanent magnets

Detection Method

- $(n,^3 \text{He})_{\uparrow\downarrow} \to p + T$ generates 80 nm UV scintillation light in LHe.
- UV light is then downconverted by dTPB wavelength shifter.
- Blue light is then further converted to green light using wavelength shifting fiber.
- Green light is then detected using SiPM.
- Recent test with eTPB coating has measured 38 PE using alpha source => >13 PE projected yield

Measurement Methods: Free Precession

- $\pi/2$ rotation to start free precession of neutron and ³He.
- SQUID magnetometers are used to read out the precession frequency of ³He.
- Current SQUID sensitivity at 1 fT.
- Signature of EDM appears as a shift in $\omega_3 \omega_n$ corresponding to the reversal of E with respect to B.

$$d_n = \frac{\hbar}{2E} [(\omega_s^{\uparrow} - \omega_s^{\downarrow}) - \frac{(\gamma_3 - \gamma_n)}{\gamma_3} (\omega_3^{\uparrow} - \omega_3^{\downarrow})]$$

⊗B ↑ neutron

↑ ³He

Measurement cell filled with SF ⁴He

Free Precession Signal

Spin Dressing

Apply non-resonant RF field in x direction

$$B_x(t) = B_{\rm rf} \cos(\omega_{\rm rf} t)$$

Precession frequency in y-z plane is:

$$\omega(t) = \dot{\theta}(t) = \gamma B_x(t)$$

$$\theta(t) = -\gamma (B_{\rm rf}/\omega_{\rm rf}) \sin(\omega_{\rm rf}t)$$

• The time averaged z component of spin is:

$$\langle \cos \theta(t) \rangle_T = \frac{1}{T} \int dt \cos[-\gamma (B_{\rm rf}/\omega_{\rm rf}) \sin(\omega_{\rm rf}t)] = J_0(x) \quad x = \gamma (B_{\rm rf}/\omega_{\rm rf})$$

• The effective gyromagnetic ratio becomes:

$$\gamma_{\rm eff} = \gamma_0 J_0(x)$$

Critical spin dressing

Relative precession

$$\omega_{rel} = (\gamma_n^{\text{eff}} - \gamma_3^{\text{eff}}) B_0; \quad \gamma_i^{\text{eff}} = J_0(x_i) \gamma_i;$$

$$x_i = \gamma_i B_{\text{rf}} / \omega_{\text{rf}}; \quad i = \text{UCN}, ^3 \text{He}$$

The effect of B field can be eliminated if

$$\gamma_n J_0(x_n) - \gamma_3 J_0(x_3) = 0$$

This means

$$\alpha J_0(\alpha x_c) = J_0(x_c); \quad \alpha = \gamma_3/\gamma_n = x_3/x_n$$

• Solution: "critical dressing" $x_c \approx 1.19, \ J_0(x_c) = 0.65$

Detection of nEDM with dressed spin method

• In the presence of nEDM:

$$\omega_{rel} = (\gamma_n^{\text{eff}} - \gamma_3^{\text{eff}})B_0 + 2ed_n E J_0(x)/\hbar$$

At critical dressing:

$$\omega_{rel} = 2ed_n E J_0(x_c)/\hbar$$

$$\theta_{n3} = \omega_{rel} t = 2ed_n E J_0(x_c) t/\hbar$$

Modulate the dressing field around x_c

$$x(t) = x_c + \epsilon \cos \omega_m t + k d_n E$$

$$\delta \theta \sim (\epsilon/\omega_m) \sin \omega_m t + k d_n E t = \delta \theta_0 + k d_n E t$$

- Scintillation rate
 - Without nEDM: $S \propto (\delta \theta_0)^2$
 - With nEDM: $S \propto (\delta \theta_0)^2 + 2\delta \theta_0 k d_n E t$
- Apply feedback to dressing parameter to zero first harmonic; then this feedback vs. E-field direction is the EDM signal.

Magnetic shielding

- Shield house requirements:
 - Gradients: < 10⁻⁷ G/cm over 1m central volume
 - Shielding Factors: > 150 @ 1 Hz, >10000 @ 10-10000 Hz
- Cryogenic magnet package:
 - Superconducting B₀ coil
 - Metglas (ferromagnetic) B₀ flux return
 - Superconducting shield/field shaper
 - Dressed spin coil
- Current 1/3 scale prototype is operational
- Procuring full scale magnet package.

High Voltage System

- Design goal 70 kV/cm => 600 kV between electrodes
- Minimum leakage current between the electrodes
- Electrodes made of PMMA coated with conductive material
- Resistant to thermal cycling and sparking
- Minimal activation due to exposure to neutron beam
- Non-magnetic
- Fabrication technique scalable to large (10x40x80 cm3) complicated 3D shape
- Current efforts:
 - R&D with Medium Scale High Voltage System
 - Design of Half Scale High Voltage System

MSHV

Purpose

- To study breakdown field dependence on
 - Temperature
 - Pressure
 - Gap size
 - Electrode material
 - Presence of dielectric object

Features

- 6 L LHe volume cooled by a ³He fridge
- Electrode size ~ 12 cm in diameter
- Electric field: up to 100 kV/cm in 1 cm gap
- Gap size: adjustable
- Lowest temperature ~ 0.4 K
- Pressure: variable between SVP and 1 atm
- Turn around time ~ 2 weeks

Key Results

- $E_{BD} > 105 \text{ kV/cm}$ in 1 cm gap for EP SS electrodes
- E_{BD} > 85 kV/cm in 1 cm gap for Cu implanted PMMA electrodes
- E_{BD} > 80 kV/cm in 1 cm gap for EP SS electrodes with PMMA insert
- Leakage current ≤ 2 pA at 40 kV with PMMA insert

UCN Storage measurements

- Goal is to use existing LANL UCN source to test prototype cells.
- Measured UCN storage time of a new prototype measurement cell at different temperatures.
- Temperature dependence allows extrapolation down to 0.4 K.
- Also measured the storage curve with contamination frozen on cell wall during cooling.

Results

- ~2E-5 for loss factor, goal for the final experiment is 0.8E-5
- Contamination run shows that cell must be actively pumped during cool down.

Summary

Significant progress in

- ³He heat flush studies
- Light collection of 80 nm light
- Cryogenic magnet package design and operation
- Tests of high voltage electrodes
- UCN storage time of prototype measurement cells

What is next?

- Collaboration is moving toward a large scale integration phase.
- Scheduled for commissioning data at end of 2021.

Leakage current requirements

Effects	Limit	Comments
Magnetic field generated by leakage currents	1 nA	50 pA without comagnetometer
Heating due to leakage current affecting 3He distribution, coupled with B-field gradient	1 pA	In order for this effect to mimic EDM signal, leakage current location need to be dependent on the E field direction, and the leakage current to be flowing on the inner wall
Voltage reduction due to leakage current	100 pA	100 pA current in each cell changes the HV by 10% over 6 hours