Recent PHENIX Measurements Sensitive to the Gluon Polarization in the Proton Haiwang Yu (New Mexico State University) for PHENIX Collaboration June 28, 2016 ## Abstract Understanding the proton spin structure in terms of quark and gluon degrees of freedom is one of the key open questions in the field of hadron physics. Gluon helicity, $\Delta g(x)$, related measurements play an important role in solving this "Spin Puzzle". The polarized proton+proton collisions at the Relativistic Heavy Ion Collider provide unique opportunities for studying $\Delta g(x)$ by accessing it via a variety of probes through gluon-gluon or quark-gluon interactions at leading order. The double-helicity spin asymmetries (A_{LL}) for π^0 and jet production were measured at PHENIX and STAR, respectively, in 2009 using polarized p + p collisions at 200 GeV center-of-mass energy, revealing for the first time evidence of nonzero $\Delta q(x)$ for Bjorken-x in the range 0.05 < x < 0.2. Yet $\Delta q(x)$ for x < 0.05 is still poorly constrained. In this talk, we will report recent PHENIX measurements sensitive to the gluon polarization. The π^0 A_{LL} measurements at central rapidity ($|\eta| < 0.35$) at $\sqrt{s} = 510$ GeV can provide constraints on gluon polarization down to x near 10^{-2} . At forward rapidity (1.2 < |y| < 2.2), also at 510 GeV, the measurement of A_{LL} for J/ψ production has sensitivity to $\Delta g(x)$ for $x \approx 2 \times 10^{-3}$.