

Recent PHENIX Efforts on Probing the Gluon Polarization in the Proton

Haiwang Yu

(New Mexico State University)

for PH ENIX Collaboration

22nd International Spin Symposium

Hosted by: University of Illinois and Indiana University September 25-30, 2016 at UIUC

Current Knowledge on Gluon Polarization

- Quark polarization was relatively well constrained by DIS, SIDIS experiments.
 - Sea quark polarization not so well known.

The Gluon polarization was poorly constrained.

S. Park's Talk

Gluon Polarization and Double Helicity Asymmetries (A_{LL})

Theoretically:

$$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} = \frac{\sum_{a,b,c=q,\bar{q},g} \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma} \otimes D_{h/c}}{\sum_{a,b,c=q,\bar{q},g} f_a \otimes f_b \otimes \hat{\sigma} \otimes D_{h/c}}$$

Experimentally:

$$A_{LL} = \frac{1}{P_R P_Y} \frac{N^{++} - R N^{+-}}{N^{++} + R N^{+-}}$$

Where $P_{B,Y}$ is the polarization of Blue (Yellow) beam. And R is the relative luminosity:

$$R = \frac{L^{++}}{L^{+-}}$$

PHENIX

PHENIX Central Arm

- Energy measured in EM Calorimeter (PbSc + PbGI)
- Momentum/Tracking in Drift Chamber (DC) + Silicon Barrel (VTX)
- PID with Ring Imaging Cherenkov Counter (RICH)
- $|\eta| < 0.35, \, \Delta \phi = 2 \times \frac{\pi}{2}$

Forward Muon Spectrometer

- Silicon strip tracking and vertexing (FVTX)
- Momentum measured in cathode strip tracking chambers (MuTr)
- μ^{\pm} ID from larocci tubes interleaved with steel absorbers (MuID)
- $1.2 < |\eta| < 2.2, \, \Delta \phi = 2\pi$
- Muon Piston Calorimeter (MPC) 3.1 < $|\eta|$ < 3.9

Recent PHENIX Measurements Sensitive to Gluon Polarizations

600

500

300

- Finalized Analyses:
 - 2012, 2013 510 GeV $\pi^0 A_{II}$ at central rapidity
 - Phys. Rev. D 93, 011501(R) Published 7 January 2016
 - 2013 510 GeV J/ψ A_{II} at forward rapidity

- Central:
 - 2013 charged pion A_{II} T. Moon's Talk
 - 2013 direct photon A_{II}
 - 2013 Jet A_{1,1} M. Patel's Poster
 - 2009, 2011 di- $\pi^0 A_{II}$
- Forward:
 - 2011, 2013 500, 510 GeV $\pi^0 A_{II}$

Polarized proton runs

2013 P = 53%

250/255 GeV

100 GeV

$\pi^0 A_{II}$ and Gluon Polarization

arXiv1501.01220

$$A_{LL} = \frac{d\Delta\sigma}{d\sigma} \approx a_{gg}\Delta g \Delta g + a_{qg}\Delta q \Delta g$$

$\pi^0 A_{LL}$ measurement procedure

- Reconstruct π^0 peak with γ pair in Electromagnetic Calorimeter at PHENIX (PbSc and PbGI).
- Workhorse channel at PHENIX:
 - large cross section
 - finely segmented EMCal:
 - $\Delta\eta$:0.01, 0.008, $\Delta\phi$: 0.01, 0.008 for PbSc and PBGI
 - high p_T photon trigger.
- Inclusive asymmetry and side band background asymmetry:

$$A_{LL}^{\pi^0} = \frac{A_{LL}^{(\pi^0 + BG)} - rA_{LL}^{BG}}{1 - r}$$

Beam View

East

West

π^0 Cross Section at 510 GeV

- Cross section results are given for $0.5 < p_T < 30$ GeV/c.
- The cross section is well described by NLO perturbative QCD.

$\pi^0 A_{LL}$ results at central rapidity ($|\eta|$ <0.35)

- 200 GeV results published in Phys. Rev. D 90, 012007 (2014)
- 510 GeV results recently published Phys. Rev. D 93, 011501(R) (2016).
 - The results follows positive trend with p_T and \sqrt{s} as predicted by NLO pQCD.
 - Additional constrains on gluon polarization and extended Bjorken x coverage down to ~0.01.

Further improve the knowledge of Δg

J/ψ production at RHIC

Forward Muon Spectrometer

At RHIC energies J/ψ production is dominated by gluon-gluon fusion.

The A_{LL} for J/ψ can be written (LO):

$$A_{LL} = \frac{\Delta \sigma}{\sigma} = \hat{\alpha}^{gg \to J/\psi} \frac{\Delta g(x1)}{g(x1)} \frac{\Delta g(x2)}{g(x2)}$$

 $q\bar{q}$ to gg ratios of unpolarized (solid) and polarized (dashed) processes

J/ψ production at RHIC

Forward Muon Spectrometer

At RHIC energies J/ψ production is dominated by gluon-gluon fusion.

The A_{LL} for J/ψ can be written (LO):

$$A_{LL} = \frac{\Delta \sigma}{\sigma} = \hat{\alpha}^{gg \to J/\psi} \frac{\Delta g(x1)}{g(x1)} \frac{\Delta g(x2)}{g(x2)}$$

$J/\psi A_{II}$ Measurement Procedure

Outline

- Analyze south and north arm separately, and divide data from each arm into 3 p_T bins. So 6 subsets total.
- Fit each subsets for 2σ J/ ψ mass window and background fraction "r".
 - CB shape for J/ψ, Gaussian for ψ'
 - Gaussian Process Regression (GPR) for background shape
- Sideband region is defined as $M_{\mu\mu} \in [1.5 \, GeV, 2.5 \, GeV]$
- Calculate $A_{LL}^{incl.}$ in the 2σ J/ ψ mass window
- Estimate the background asymmetry from a sideband

$$A_{LL}^{J/\psi} = \frac{A_{LL}^{incl.} - r * A_{LL}^{BKG.}}{1 - r}$$

$$\Delta A_{LL}^{J/\psi} = \frac{\sqrt{(\Delta A_{LL}^{incl.})^2 + r^2 * (\Delta A_{LL}^{BKG.})^2}}{1 - r}$$

Gaussian Process Regression (GPR) background fraction extraction

$J/\psi A_{II}$ at Forward Rapidity Results

Submitted to PRD. arXiv:1606.01815

NNPDFpol 1.1: Nucl. 616 Phys. B 887, 276 (2014). Re-weighting method: Nucl. Phys. B 849, 112 (2011)

- Currently the constraining power on gluon polarization limited by large production mechanism uncertainty.
- Favors positive gluon polarization under assumption that $\hat{a}^{gg \to J/\psi} = 1$. We are looking forward to future experimental and theoretical progress to pin down the $\hat{a}^{gg \to J/\psi}$.
- Universality test of the helicity-dependent gluon densities and QCD factorizations.

Ongoing Forward $\pi^0 A_{LL}$ Analyses

- Muon Piston Calorimeter (MPC) $3.1 < |\eta| < 3.9$
- 2011 MPC cluster ALL result is finalized. 2013 data analysis underway.
- Could extend the constraints on Δg down to $x \sim 10^{-3}$.

MPC Clusters Fraction from Pythia simulation at 500 GeV

PHENIX Central Arm

- Charged Pion A_{LL} Analysis on-going with PHENIX 2013 data.
- Complementary measurement to neutral pion
 A_{LL} measurements with large statistics.

$$A_{LL}^{\pi^+} \approx a_{gg} \Delta g \Delta g + a_{ug} \Delta u \Delta g$$

$$A_{LL}^{\pi^{-}} \approx a_{gg} \Delta g \Delta g + a_{dg} \Delta d \Delta g$$

Previous Charged Pion A_{LL} Results and expected statistical precisions for currently on-going analysis based on 2013 PHENIX data.

 A_{11} in π^{\pm} production at \sqrt{s} = 200 and 510 GeV

Jet A_{LL}

- Jet A_{LL} measurements on-going with PHENIX 2013 data.
- Comparable statistical uncertainty to the STAR 2012 Jet measurement.
- Independent check of STAR data.

Used Charge fraction (cf) and number of constituents (nc) cuts to reduce high pT background.

Direct Photon A,,

$$A_{LL} = \frac{\Delta g}{g} A_1^p \hat{a}(qg \to \gamma q)$$

- Direct Photon A_{LL} Analysis on-going with PHENIX 2013 data.
- Large statistics.
- Very clean production mechanism.
- No fragmentation function involved.
- Better constrained of the kinematics than $\pi^0 A_{LL}$.

Impact on Gluon Polarization of the RHIC Data

Projection with and without pseudo-data for current and future RHIC measurements up to PHENIX Run-2015.

2015 - 2016:

- Published Include in Global fittings
 - 2009 200GeV Central $\pi^0 A_{II}$
- Published/Submitted Not Include in Global fittings
 - 2012, 2013 510GeV Central $\pi^0 A_{LL}$
 - 2013 510GeV Forward $J/\psi A_{II}$
- Ongoing
 - 2013 510GeV Central $\pi^{\pm} A_{II}$
 - 2013 510GeV Central direct photon A₁₁
 - 2013 *Jet A*₁₁ at central rapidity
 - 2009, 2011 di- $\pi^0 A_{II}$
 - 2011, 2013 500, 510GeV Forward $\pi^0 A_{II}$

arXiv:1602.03922

Opportunities at PHENIX IP beyond 2020

Proposed sPHENIX:

- Tracking, EMCal and HCal covering -1 < η < 1 and $|\phi|$ < 2π
- Expecting CD0 soon
- ~ 8 times acceptance of PHENIX EMCal
- ~ 2 time DAQ rate of PHENIX
- Better Jet Energy Scale uncertainty
- Significantly improve the statistical precision of the $\pi^0 A_{LL}$, Jet A_{LL} and Direct Photon A_{LL} measurements.

fsPHENIX:

J. Lajoie's Talk

- Forward Spectrometer.
- LOI stage
- Small x: π^0 , Jet and Direct Photon

Cold QCD topical group formed recently

Detector at PHENIX IP for EIC

Summary and Outlook

Run12, Run13 π^0 A_{LL} at central rapidity ($|\eta| < 0.35$) published at PRD Rapid Communications.

- Could reduce the global fit uncertainties on $\Delta g(x)$
- Extend the $\Delta g(x)$ constraints down to $x \sim 10^{-2}$.
- We are looking forward to the new global fit including this data.

Run13 J/ψ A_{LL} at forward rapidity submitted to PRD.

- Sensitive to gluon polarization down to $x \sim 2 \times 10^{-3}$.
- Universality check for the QCD factorization of the gluon helicity dependent P.D.F.
- Could improve the gluon polarization precision at smaller x with further knowledge on the production mechanism.

Many analyses also sensitive to Δg are on-going.

Possible opportunities at PHENIX IP for gluon polarization measurement with new detectors beyond 2020.

Backups

RHIC Plan 2017 - 202X

arXiv: 1602.03922

	Year	√s (GeV)	Delivered Luminosity	Scientific Goal	s	
Scheduled RHIC running	2017	p [↑] p @ 510	400 pb ⁻¹ 12 weeks	Sensitive to Sivers effect non-universality through TMDs and Twist-3 $T_{q,F}(x,x)$ Sensitive to sea quark Sivers or ETQS function Evolution in TMD and Twist-3 formalism Transversity, Collins FF, linearly pol. Gluons, Gluon Sivers in Twist-3		
				First look at GPD Eg		
	2023	p [↑] p @ 200	300 pb ⁻¹ 8 weeks	subprocess driving the large A_N	subprocess driving the large A_N at high x_F and η	
				evolution of ETQ properties and nature of the diff p+p collisions.		
	2023	p [↑] Au @ 200	1.8 pb ⁻¹ 8 weeks	What is the nature of the initial standard nuclear collision	If the bea	
				Nuclear dependence of T	ther STAR of the state of the s	
				Clear signatures for S	possible to i	
	2023	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of	main channe	
			o weeks	A-dependence of TMI	sive mid-rap tor of 3. Wit	
				A-dependence for Sa	of 300 pb ⁻¹	
Pote	202X	p [↑] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and	such as directed to sh	
Potential future running				quantitative comparisons of the va factorization and universality in ler proton collisio	moderate x smaller stati	
	202X	$\vec{p} \vec{p} $ @ 510	1.1 fb ⁻¹ 10 weeks	$\Delta g(x)$ at small	neutral pions	

If the beams are longitudinally polarized at either STAR or sPHENIX during the proposed √s = 200 GeV p+p running in 2023, it would be possible to increase the data sample for the two main channels of the RHIC ΔG program, inclusive mid-rapidity jets and neutral pions, by a factor of 3. With the projected integrated luminosity of 300 pb⁻¹ (see Table 1-2) the other channels such as direct photons and charged pions are expected to show sensitivity to a non-zero ΔG for moderate x (x>0.05), though with significantly smaller statistical power compared to jets and neutral pions.

Observable

 A_N for γ , W^{\pm} , Z^0 , DY

 $A_{UT}^{\sin(\phi_s-2\phi_h)} A_{UT}^{\sin(\phi_s-\phi_h)}$ modula-

tions of h^{\pm} in jets, $A_{IIT}^{\sin (\phi_S)}$ for jets

 A_{UT} for J/ Ψ in UPC

 A_N for charged hadrons and flavor

enhanced jets

 A_N for γ

 A_N for diffractive events

Required **Upgrade**

 A_N^{DY} : Postshower

to FMS@STAR

None

None

Yes Forward instrum.

None

None

FIG. 1. (color online) The probability for two photons from π^0 decay to be separated by the PHENIX EMCal clustering algorithm vs π^0 p_T ; obtained from GEANT [19] simulation for the two-photon energy asymmetry cut $\alpha < 0.8$.

PRD 93, 011501(R) (2016)

arxiv: 0810.0694