22nd International Spin Symposium September 25-20, 2016 at UIUC

Di-hadron production in p-p collisions and the universality of transversity

Marco Radici INFN - Pavia

in collaboration with

- A. Bacchetta (Univ. Pavia)
- A. Courtoy (Univ. Guanajuato Mexico)
- A. Mukherjee (IITB Mumbai India)

based on Master th. of A.M. Ricci (Univ. Pavia)

leading-twist TMD map

quark polarization

	0
•	
	7
•	\equiv
	larizatior
	bolg
	leon
	<u>O</u>
	nucleon

	U	L	Т
U	f ₁		$\mathbf{h_1}^\perp$
L		g ₁ L	h_{1L}^\perp
Т	f_{1T}^{\perp}	9 1T	h ₁ h _{1T} ¹

$$f_1 = \bullet$$

$$g_1 = \bullet$$

$$h_1 = \bullet$$

h₁ transversity distribution

Transversity poorly known, but how much?

World data for F₂^p **f**₁ from fits of **thousands** data

World data for g₁^p
g₁ from fits of
hundreds data

World data for h₁ from fits of tens data

Tensor Charge

■ 1st Mellin moment of transversity ⇒ tensor "charge"

$$\delta q \equiv g_T^q = \int_0^1 dx \ \left[h_1^q(x, Q^2) - h_1^{\bar{q}}(x, Q^2) \right]$$

tensor charge not directly accessible in \mathcal{L}_{SM} low-energy footprint of new physics at higher scales?

Example: neutron β -decay $n \rightarrow p e^{-} \overline{\nu}_{e}$

SM

BSM

$$\epsilon_T g_T \approx M_W^2 / M_{BSM}^2$$

precision of $0.1\% \Rightarrow [3-5]$ TeV bound for BSM scale

First extractions of transversity: the Collins effect

also "quasi-transversity" on lattice (LaMET) forward limit of chiral-odd GPD H_T

Chen et al., arXiv:1603.06664 Goldstein, Gonzalez and Liuti, P.R. D**91** (15) 114013

di-hadron fragmentation (DiFF)

Collins, Heppelman, Ladinsky, N.P. **B420** (94)

correlation between quark pol. S_T and $2R_T$ \rightarrow azimuthal asymmetry survives even if polar symmetry ($\int d\mathbf{P}_{hT}$) equivalent to take $\mathbf{P}_h || \mathbf{k} \rightarrow \text{no } \mathbf{k}_T$

collinear factorization

di-hadron fragmentation (DiFF)

Collins, Heppelman, Ladinsky, N.P. B420 (94)

two-hadron SIDIS

correlation between quark pol. \$7 and 2R7

→ azimuthal asymmetry

survives even if polar symmetry ($\int d\mathbf{P}_{hT}$) equivalent to take $\mathbf{P}_h || \mathbf{k} \rightarrow \text{no } \mathbf{k}_T$

Radici, Jakob, Bianconi, P.R.D65 (02) 074031

$$A_{\text{SIDIS}}^{\sin(\phi_R + \phi_S)}(x, z, M_h^2) \sim -\frac{\sum_q e_q^2 h_1^q(x) \frac{|\mathbf{R}_T|}{M_h} H_{1,q}^{\triangleleft}(z, M_h^2)}{\sum_q e_q^2 f_1^q(x) D_{1,q}(z, M_h^2)}$$

x-dep. of SSA given by PDFs only

collinear factorization

chiral-odd DiFF $z = z_1+z_2$ price to pay: dependence on $(\pi\pi)$ invariant mass M_h

the Pavia fit

• parametrization at $Q_0^2 = 1 \text{ GeV}^2$

$$xh_1^{q_v}(x) = \tanh\left[\sqrt{x}\left(A_q + B_q x + C_q x^2 + D_q x^3\right)\right] \left[x\operatorname{SB}_q(x) + x\operatorname{\overline{SB}}_{\bar{q}}(x)\right]$$

flexible

satisfies Soffer Bound at any Q²

$$2|h_1^q(x,Q^2)| \le 2 \operatorname{SB}_q(x) = |f_1^q(x) + g_1^q(x)|$$

• SIDIS data from

and

Airapetian et al., JHEP **0806** (08) 017

Adolph et al., P.L. **B713** (12)

Braun et al., E.P.J. Web Conf. **85** (15) 02018

history of upgrading fits

Bacchetta, Courtoy, Radici, P.R.L. **107** (11) 012001

Bacchetta, Courtoy, Radici, JHEP **1303** (13) 119 Radici et al., JHEP **1505** (15) 123

error analysis: the replica method

alter data with random noise and fit them

100 replicas

proton deuteron

comparison with Collins effect

comparison with Collins effect

collinear factorization in hard processes

Jaffe, Jin, Tang, P.R.L.**80** (98) 1166 Radici, Jakob, Bianconi, P.R.D**65** (02) 074031 Bacchetta & Radici, P.R. D**67** (03) 094002

collinear factorization in hard processes

Bacchetta & Radici, P.R. D**70** (04) 094032

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

B beam polarized

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D_{1}^{c}(\bar{z}, M)$$

$$\hat{t} = t \, x_{a}/\bar{z}$$

Bacchetta & Radici, P.R. D**70** (04) 094032

B beam polarized

forward polarized particles at $\eta < 0$

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D_{1}^{c}(\bar{z}, M)$$

$$\hat{t} = t \, x_{a}/\bar{z}$$

$$\frac{d\sigma_{UT}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = |\mathbf{S}_{BT}| \, 2 \, |\mathbf{P}_{T}| \, \frac{|\mathbf{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2} \bar{z}} \, f_{1}^{a}(x_{a}) \, h_{1}^{b}(x_{b}) \frac{d\Delta \hat{\sigma}_{ab^{\uparrow} \to c^{\uparrow} d}}{d\hat{t}} \, H_{1}^{\triangleleft c}(\bar{z}, M)$$

Our prediction: asymmetry given by same mechanism active in SIDIS

Bacchetta & Radici, P.R. D70 (04) 094032

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

B beam polarized

forward polarized particles at $\eta < 0$

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D_{1}^{c}(\bar{z},M)$$

$$\hat{t} = t \; x_a/\bar{z}$$

$$\frac{d\sigma_{UT}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = |\mathbf{S}_{BT}| \, 2 \, |\mathbf{P}_{T}| \frac{|\mathbf{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, h_{1}^{b}(x_{b}) \, \frac{d\Delta \hat{\sigma}_{ab\uparrow \to c\uparrow d}}{d\hat{t}} \, H_{1}^{\triangleleft c}(\bar{z}, M)$$

$$\frac{|\mathbf{R}|}{M} = \frac{1}{2} \sqrt{1 - 4 \frac{m_{\pi}^2}{M^2}}$$

 $\frac{|R|}{M} = \frac{1}{2} \sqrt{1 - 4 \frac{m_{\pi}^2}{M^2}}$ $M = \text{invariant mass of } (\Pi \Pi)$

Bacchetta & Radici, P.R. D70 (04) 094032

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

B beam polarized

forward polarized particles at $\eta < 0$

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2} \bar{z}} f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D((\bar{z}, M))$$

$$\hat{t} = t \; x / \bar{z}$$

$$\frac{d\sigma_{UT}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = |\mathbf{S}_{BT}| \, 2 \, |\mathbf{P}_{T}| \, \frac{|\mathbf{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2} \bar{z}} f_{1}^{a}(x_{a}) \, h_{1}^{b}(x_{b}) \, \frac{d\Delta \hat{\sigma}_{ab\uparrow \to c\uparrow d}}{d\hat{t}} \, H_{1}^{\triangleleft}(\bar{z}, M)$$

 η = pseudorapidity

conservation of momenta in $ab \rightarrow cd$

 \Rightarrow $(\pi\pi)$ fract. energy fixed to

$$\bar{z} = \frac{|\mathbf{P}_T|}{\sqrt{s}} \frac{x_a e^{-\eta} + x_b e^{\eta}}{x_a x_b}$$

Bacchetta & Radici, P.R. D70 (04) 094032

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

B beam polarized

polarized particles at $\eta < 0$

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2|\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} f_{1}^{a}(x_{a}) f_{1}^{b}(x_{b}) \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} D(\bar{z}, M)$$

$$\hat{t} = t$$

$$\hat{t} = t \; x_{\nu}/\bar{z}$$

$$\frac{d\sigma_{UT}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = |\mathbf{S}_{BT}| \, \mathcal{I}|\mathbf{P}_{T}| \frac{|\mathbf{R}|}{M} \sin \theta \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2} \bar{z}} f_{1}^{a}(x_{a}) \, h_{1}^{b}(x_{b}) \, \frac{d\Delta \hat{\sigma}_{ab^{\uparrow} \to c^{\uparrow} d}}{d\hat{t}} \, H_{1}^{\triangleleft f}(\bar{z}, M)$$

|P_T| = transverse component of pair total momentum with respect to A beam

hard scale $|P_T| \gg M$, M_A , M_B

forward Aut(M): STAR data

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501 run 2012 K. Landry, talk at APS 2015

forward $A_{UT}(M)$: our prediction vs. STAR data

Radici et al., P.R. D**94** (16) 034012

band = prediction using central 68% of replicas from SIDIS fit

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501 run 2012 K. Landry, talk at APS 2015

forward $A_{UT}(M)$: our prediction vs. STAR data

Radici et al., P.R. D**94** (16) 034012

band = prediction using central 68% of replicas from SIDIS fit

same mechanism produces asymmetries in SIDIS and pp collisions

⇒ likely to be universal

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501

run 2012 K. Landry, talk at APS 2015

backward Aut(M)

Radici et al., P.R. D**94** (16) 034012

band = prediction using central 68% of replicas from SIDIS fit

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501

run 2012 K. Landry, talk at APS 2015

$A_{UT}(\eta)$

band = prediction using central 68% of replicas from SIDIS fit

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501 run 2012 K. Landry, talk at APS 2015

$A_{UT}(\eta)$

band = prediction using central 68% of replicas from SIDIS fit

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501
run 2012 K. Landry, talk at APS 2015

$Aut(P_T)$

backward

Radici et al., P.R. D**94** (16) 034012

band = prediction using central 68% of replicas from SIDIS fit

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (2015) 242501
 run 2012 K. Landry, talk at APS 2015

problem: K factor?

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

no data yet for unpol. cross section $d\sigma^0: p+p \rightarrow (\pi\pi) X$

gluon channel unconstrained

only from DGLAP

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D_{1}^{c}(\bar{z}, M)$$

possible large K factor in $d\sigma^0$ (but not in $d\sigma_{UT}$!)

uncertainty band probably underestimated

problem: K factor?

$$d\sigma \sim d\sigma^0 + \sin(\Phi_S - \Phi_R) d\sigma_{UT}$$

no data yet for unpol. cross section $d\sigma^0: p+p \rightarrow (\pi\pi) X$

gluon channel unconstrained

only from DGLAP

$$\frac{d\sigma^{0}}{d\eta \, d|\mathbf{P}_{T}| \, dM} = 2 \, |\mathbf{P}_{T}| \sum_{a,b,c,d} \int \frac{dx_{a} \, dx_{b}}{8\pi^{2}\bar{z}} \, f_{1}^{a}(x_{a}) \, f_{1}^{b}(x_{b}) \, \frac{d\hat{\sigma}_{ab\to cd}}{d\hat{t}} \, D_{1}^{c}(\bar{z}, M)$$

possible large K factor in $d\sigma^0$ (but not in $d\sigma_{UT}$)

uncertainty band probably underestimated

but no K factor can change sign and trend of $A_{UT}(M)$

Radici et al., P.R. D**94** (16) 034012

stability and saturation of Soffer bound

stable results in range of SIDIS data

Radici et al., JHEP **1505** (15) 123

stability and saturation of Soffer bound

origin of saturation of Soffer bound

full SIDIS fit

Kang et al.,

P.R. D93 (16) 014009

Radici et al., JHEP **1505** (15) 123

Anselmino et al., P.R. D**87** (13) 094019

"reduced" SIDIS fit: no bins #7,8 with deuteron

no appreciable difference for up

forward $A_{UT}(P_T)$ and $A_{UT}(\eta)$ with "reduced" fit

full SIDIS fit

"reduced" SIDIS fit

"reduced" fit: more flexibility ⇒ better compatibility

reconsider problem in forward kin.

some replicas outside the 68% band from SIDIS fit show compatibility with p-p data in forward kin.

selectivity of p-p data on results from SIDIS fit

need global fit work in progress

run 2006 Adamczyk et al. (STAR), P.R.L. 115 (15) 242501

PRELIMINARY --- run 2012 K. Landry, talk at APS 2015

g_T^{u-d} affects tensor coupling in β -decay

$$Q^2 = 4 \text{ GeV}^2$$

- 4) PNDME '15 Bhattacharya et al., P.R. D92 (15)
- **5) LHPC '12** Green et al., P.R. D86 (12)
- **6) RQCD '14** Bali et al., P.R. D**91** (15)
- 7) RBC-UKQCD Aoki et al., P.R. D82 (10)
- 8) ETMC '15

 Abdel-Rehim et al., P.R.D92 (15);

 E P.R.D93 (16)
- 9) ETMC '15

g_T^{u-d} affects tensor coupling in β -decay

1) Radici et al. 2015

- 2) Kang et al. 2016 $Q^2 = 10$
- 3) Anselmino et al. 2013

$$Q^2 = 0.8$$

g_T^{u-d} affects tensor coupling in β -decay

 g_T^{u-d} affects tensor coupling in β -decay

10) SoLID 2016

pseudo-data based on 2) Kang et al. 2016 $Q^2 = 10$

Ye et al., arXiv:1609.02449

caveat: SoLID acceptance $\rightarrow x \in [0.05, 0.6]$

current most stringent constraints on BSM tensor coupling from $\pi^+ \rightarrow e^+ v_e \gamma$ and neutron β -decay is

| \mathbf{E}_{T} g_T | ≤ 5 × 10⁻⁴

Bychkov et al. (PIBETA), P.R.L. 103 (09) 051802 Pattie et al., P.R. C88 (13) 048501 potential of SoLID can bring precision to level of modern lattice calculations and β -decay measurements

Conclusions

- transversity can be reliably extracted from data using semi-inclusive di-hadron production
- di-hadron method works in collinear factorization
 - cross-check of Collins effect in TMD factorization
 - extension to p-p collisions → check universality
 global fit in progress

Next: complete global fit of existing 2h-SIDIS & p-p data

 tensor charge useful for low-energy explorations of BSM new physics

need more data at (very) large and (very) small x "short run": RHIC & JLAB12 "long run": EIC

Backup slides

reweighting the replicas

NNPDF Collaboration, N.P. **B849** (11) 112; E **B854** (12) 926; E **B855** (12) 927; arXiv:1012.0836v4

- each replica h_k (k=1,..,N) carries equal weight (important sampling)
- effect of set of new independent n data by assigning new weights w_k $w_k \Leftrightarrow \text{probability for each replica } h_k \text{ to agree with new n data } (\chi_k^2)$

$$w_k = \frac{(\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N} \sum_{k=1}^N (\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2}}$$

• price to pay: replica k with very low w_k is statistically irrelevant loss of efficiency quantifiable through Shannon entropy

$$N_{\text{eff}} = \exp\left\{\frac{1}{N}\sum_{k=1}^{N} w_k \ln\left(\frac{N}{w_k}\right)\right\} \le N$$

χ²-profile of reweighted replicas

$$P[A_{\chi} = \{\chi^2 \le \chi_k^2 < \chi^2 + d\chi^2\}] = \sum_{k \in A_{\chi}} w_k$$

if $P[A_X]$ peaked at $\chi \sim O(1)$ new data bring new info otherwise are inconsistent

X²-profile of reweighted replicas

"reduced" SIDIS fit flexible param.

N=100 replicas

χ²-profile n=24 RHIC data from run 2006

Adamczyk et al. (STAR), P.R.L. **115** (15) 242501

> $N_{eff} = 7$ χ^2 -profile reweighted replicas

STAR data very selective on "reduced" SIDIS fit: reduce the number of statistically relevant replicas by factor ≥ 10

statistically most relevant replicas

flexible param.

reweighted replicas

_____ Kang et al., P.R. D**93** (16) 014009

Anselmino et al., P.R. D**87** (13) 094019

reweighting replicas on deuteron bins #7,8

- "reduced" SIDIS fit: N=100 replicas with equal weights
- reweighting on STAR data (run 2006) $\rightarrow N_{eff} = 7$ replicas with weights w_k

N_{eff} (=7) replicas with weights w_k

N' (=100) replicas with equal weights

replica with large w_k with small w_k

take it w'_k times discard it

NNPDF Collaboration, N.P. **B855** (12) 608; arXiv:1108.1758v2

• reweighting N'=100 replicas on bins #7,8 \rightarrow N'_{eff}=73 replicas but χ^2 profile of reweighted replicas not peaked at \sim O(1)

global fit of SIDIS and p-p data in progress...

back to tensor charge

precision of g_T u-d

current most stringent constraints on BSM tensor coupling come from

• Dalitz-plot study of radiative pion decay $\pi^+ \rightarrow e^+ \nu_e \gamma$

Bychkov et al. (PIBETA), P.R.L. 103 (09) 051802

measurement of correlation parameters in neutron β -decay of Pattie et al., P.R. C88 (13) 048501

various nuclei

 $|\mathbf{E}_{\mathsf{T}}| \lesssim 5 \times |0^{-4}|$

need to adapt phenomenology to precision of measurements and lattice JLAB12 is good opportunity

Courtoy et al., P.R.L. 115 (2015) 162001